The comparative effectiveness of remediating water polluted with crude oil, using environment-friendly bacteria (Pseudomonas aeruginosa) and fungi (Aspergillus niger) were investigated. The samples were separately tre...The comparative effectiveness of remediating water polluted with crude oil, using environment-friendly bacteria (Pseudomonas aeruginosa) and fungi (Aspergillus niger) were investigated. The samples were separately treated with Aspergillus niger and Pseudomonas aeruginosa. The bioremediation kinetic efficiency for these systems was studied. At the end of the bioremediation periods, the oil and grease content of the samples decreased from 47.0 mg/L in the untreated sample to 7.0 mg/L after 20 days when inoculated with bacteria while the sample inoculated with fungi decreased to 10.0 mg/L. Post analysis when inoculated with bacteria showed a fall in the value of the biological oxygen demand (BOD) from 73.84 mg/L to 33.28 mg/L after 20 days, while, the fungi inoculated sample showed a reduction from 73.84 mg/L to 38.48 mg/L. The biodegradation process with the bacteria was consistent with the pseudo-first-order model with a rate constant of 0.0891 day<sup>-1</sup>, while the biodegradation process with the fungi was consistent with the first order reaction model with a rate constant of 0.422 day<sup>-1</sup>. The degree of degradation after the 20<sup>th</sup> day of inoculation with Pseudomonas aeruginosa was 85.11%, while with Aspergillus niger was 78.72%. Thus, the results obtained showed that, Pseudomonas aeruginosa performed better than Aspergillus niger. The bioremediation data with fungi fitted the first-order model, while that of the bacteria fitted the pseudo-first-order model. Therefore, the data obtained in this study could be applied in the design of a bioremediation system for potential application to remediation of crude oil polluted water.展开更多
目的用高分辨率溶解曲线法分离鉴定包装饮用水和天然矿泉水中的铜绿假单胞菌和恶臭假单胞菌。方法本研究以假单胞菌16S rDNA为靶基因,采用高分辨率熔解曲线的方法,利用一对引物同时鉴别铜绿假单胞菌和恶臭假单胞菌。结果Tm值在83℃~84...目的用高分辨率溶解曲线法分离鉴定包装饮用水和天然矿泉水中的铜绿假单胞菌和恶臭假单胞菌。方法本研究以假单胞菌16S rDNA为靶基因,采用高分辨率熔解曲线的方法,利用一对引物同时鉴别铜绿假单胞菌和恶臭假单胞菌。结果Tm值在83℃~84℃出现熔解峰为恶臭假单胞菌,Tm值在84℃~85℃出现熔解峰为铜绿假单胞菌。通过对梯度含量的假单胞菌标准菌株DNA和多种真菌细菌的DNA进行高分辨率熔解曲线检测,显示该方法对其他12种非目标菌无交叉反应,检测限分别为41个拷贝数和48个拷贝数。结论HRM-Real time PCR检测体系可通过一对引物对上述2种假单胞菌进行有效的鉴别与区分,且具有良好的特异性和灵敏度。该方法可用于包装饮用水和天然矿泉水的日常检测中,为假单胞菌的快速检测提供了新方法。展开更多
文摘The comparative effectiveness of remediating water polluted with crude oil, using environment-friendly bacteria (Pseudomonas aeruginosa) and fungi (Aspergillus niger) were investigated. The samples were separately treated with Aspergillus niger and Pseudomonas aeruginosa. The bioremediation kinetic efficiency for these systems was studied. At the end of the bioremediation periods, the oil and grease content of the samples decreased from 47.0 mg/L in the untreated sample to 7.0 mg/L after 20 days when inoculated with bacteria while the sample inoculated with fungi decreased to 10.0 mg/L. Post analysis when inoculated with bacteria showed a fall in the value of the biological oxygen demand (BOD) from 73.84 mg/L to 33.28 mg/L after 20 days, while, the fungi inoculated sample showed a reduction from 73.84 mg/L to 38.48 mg/L. The biodegradation process with the bacteria was consistent with the pseudo-first-order model with a rate constant of 0.0891 day<sup>-1</sup>, while the biodegradation process with the fungi was consistent with the first order reaction model with a rate constant of 0.422 day<sup>-1</sup>. The degree of degradation after the 20<sup>th</sup> day of inoculation with Pseudomonas aeruginosa was 85.11%, while with Aspergillus niger was 78.72%. Thus, the results obtained showed that, Pseudomonas aeruginosa performed better than Aspergillus niger. The bioremediation data with fungi fitted the first-order model, while that of the bacteria fitted the pseudo-first-order model. Therefore, the data obtained in this study could be applied in the design of a bioremediation system for potential application to remediation of crude oil polluted water.
文摘目的用高分辨率溶解曲线法分离鉴定包装饮用水和天然矿泉水中的铜绿假单胞菌和恶臭假单胞菌。方法本研究以假单胞菌16S rDNA为靶基因,采用高分辨率熔解曲线的方法,利用一对引物同时鉴别铜绿假单胞菌和恶臭假单胞菌。结果Tm值在83℃~84℃出现熔解峰为恶臭假单胞菌,Tm值在84℃~85℃出现熔解峰为铜绿假单胞菌。通过对梯度含量的假单胞菌标准菌株DNA和多种真菌细菌的DNA进行高分辨率熔解曲线检测,显示该方法对其他12种非目标菌无交叉反应,检测限分别为41个拷贝数和48个拷贝数。结论HRM-Real time PCR检测体系可通过一对引物对上述2种假单胞菌进行有效的鉴别与区分,且具有良好的特异性和灵敏度。该方法可用于包装饮用水和天然矿泉水的日常检测中,为假单胞菌的快速检测提供了新方法。