Before intruding, primary magmas have undergone liquation and partial crystallization atdepth; as a result the magmas are partitioned into barren magma, ore-bearing magma, ore-richmagma and ore magma, which then ascen...Before intruding, primary magmas have undergone liquation and partial crystallization atdepth; as a result the magmas are partitioned into barren magma, ore-bearing magma, ore-richmagma and ore magma, which then ascend and are injected into the present locations once ormultiple times, thus forming ore deposits. The above-mentioned mineralizing process is knownas deep-seated magmatic liquation-injection mineralization. The volume of the barren magma isgenerally much larger than those of the ore-bearing magma, ore-rich magma and ore magma. Inthe ascending process, most of the barren magma intrudes into different locations or outpoursonto the ground surface, forming intrusions or lava flows. The rest barren magma, ore-bearingmagma, ore-rich magma and ore magma may either multiple times inject into the same space inwhich rocks and ores are formed or separately inject into different spaces in which rocks and oresare formed. The intrusions containing such deep-seated magmatic liquation-injection depositshave a much smaller volume, greater ore potential and higher ore grade than that of in-situmagmatic liquation deposits. Consequently this mineralizing process results in the formation oflarge deposits in small intrusions.展开更多
An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through su...An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.展开更多
文摘Before intruding, primary magmas have undergone liquation and partial crystallization atdepth; as a result the magmas are partitioned into barren magma, ore-bearing magma, ore-richmagma and ore magma, which then ascend and are injected into the present locations once ormultiple times, thus forming ore deposits. The above-mentioned mineralizing process is knownas deep-seated magmatic liquation-injection mineralization. The volume of the barren magma isgenerally much larger than those of the ore-bearing magma, ore-rich magma and ore magma. Inthe ascending process, most of the barren magma intrudes into different locations or outpoursonto the ground surface, forming intrusions or lava flows. The rest barren magma, ore-bearingmagma, ore-rich magma and ore magma may either multiple times inject into the same space inwhich rocks and ores are formed or separately inject into different spaces in which rocks and oresare formed. The intrusions containing such deep-seated magmatic liquation-injection depositshave a much smaller volume, greater ore potential and higher ore grade than that of in-situmagmatic liquation deposits. Consequently this mineralizing process results in the formation oflarge deposits in small intrusions.
文摘An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.