Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
The West Mine of the Bayan Obo deposit, located in the northern-central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb-REE-Fe) mineral resources. This paper presents a combined me...The West Mine of the Bayan Obo deposit, located in the northern-central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb-REE-Fe) mineral resources. This paper presents a combined method to explore metallogenic correlation of the Nb-REE-Fe mineralization at the Bayan Obo West Mine. The method integrates factor analysis and Back Propagation (BP) neural network technology into processing and modeling of geological data. In this study, the Nb and REE contents of samples were transformed into discrete values to analyze the correlations among the metallogenic elements. The results show weak mineralization correlations between Nb and REEs. Nb and U are closely related in the geochemical patterns, while Fe is closely related to both Th and Mn. LREEs are an important factor for the mineralization of the Bayan Obo deposit, while Fe and Nb can be considered as the results of passive mineralization. On the basis of a metallogenic correlation analysis, the factors affecting the Fe-REE-Nb mineralization were extracted, and the Nb mineralization model was established by the BP neural network. Based on the BP neural network data computing, the variability of the Nb concentration displays a coupled multi-factor nonlinear relationship, which can be used to reveal the inherent metallogenic elemental regularities and predict the degree of element mineralization enrichment in the mining area.展开更多
This paper introduces the formation mechanism and synthetic information prediction of large and superlarge deposits in Shandong Province by analyzing and studying on the GIS platform. The authors established a prospec...This paper introduces the formation mechanism and synthetic information prediction of large and superlarge deposits in Shandong Province by analyzing and studying on the GIS platform. The authors established a prospecting model of synthetic information from large and superlarge gold deposit concentration region, and the multi-source spatial database from concentration region of deposits and anomalies. On the basis of the spatial database, a target map layer, a model map layer and a predictive map layer were set up. Based on these map layers, geological variables of the model unit and predictive unit were extracted, then launched location and quantitative prediction of the gold deposit concentration region. The achievement of predicting large and superlarge deposits by the GIS platform has enabled the authors to design automation (or semi-automatic) interpretation subsystems, namely geophysics, geochemistry, geologic prospecting and comprehensive prognosis, and a set of the applicable GIS software for mineral resources prognosis of synthetic information.展开更多
This paper presents a synthetic analysis method for multi sourced g eo logical data from geographic information system (GIS). In the previous practices of mineral resources prediction, a usually adopted methodol...This paper presents a synthetic analysis method for multi sourced g eo logical data from geographic information system (GIS). In the previous practices of mineral resources prediction, a usually adopted methodology has been sta tistical analysis of cells delimitated based on thoughts of random sampling. Tha t might lead to insufficient utilization of local spatial information, for a cel l is treated as a point without internal structure. We now take “cell clusters ”, i. e. , spatial associations of cells, as basic units of statistics, thus th e spatial configuration information of geological variables is easier to be dete cted and utilized, and the accuracy and reliability of prediction are improved. We build a linear multi discriminating model for the clusters via genetic algor ithm. Both the right judgment rates and the in class vs. between class distan ce ratios are considered to form the evolutional adaptive values of the populati on. An application of the method in gold mineral resources prediction in east Xi njiang, China is presented.展开更多
Metallogenic prognosis of synthetic information uses the geological body and the mineral resource body as a statistical unit to interpret synthetically the information of geology, geophysics, geochemistry and remote s...Metallogenic prognosis of synthetic information uses the geological body and the mineral resource body as a statistical unit to interpret synthetically the information of geology, geophysics, geochemistry and remote sensing from the evolution of geology and puts all the information into one entire system by drawing up digitalized interpretation maps of the synthetic information. On such basis, different grades and types of mineral resource prospecting models and predictive models of synthetic information can be established. Hence, a new integrated prediction system will be formed of metallogenic prognosis (qualitative prediction), mineral resources statistic prediction (determining targets) and mineral resources prediction (determining resources amount).展开更多
A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,...A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,and rotation)to enhance the number of training data for the model.A window area is used to extract the spatial distribution characteristics of soil geochemistry and measure their correspondence with the occurrence of known subsurface deposits.Prospecting prediction is achieved by matching the characteristics of the window area of an unknown area with the relationships established in the known area.This method can efficiently predict mineral prospective areas where there are few ore deposits used for generating the training dataset,meaning that the deep-learning method can be effectively used for deposit prospecting prediction.Using soil active geochemical measurement data,this method was applied in the Daqiao area,Gansu Province,for which seven favorable gold prospecting target areas were predicted.The Daqiao orogenic gold deposit of latest Jurassic and Early Jurassic age in the southern domain has more than 105 t of gold resources at an average grade of 3-4 g/t.In 2020,the project team drilled and verified the K prediction area,and found 66 m gold mineralized bodies.The new method should be applicable to prospecting prediction using conventional geochemical data in other areas.展开更多
Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 ...Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 pixels subscene acquired on 21 March 2000 covering the northwestern part of Yunnan Province has been digitally processed using ER Mapper software. This article aims to produce lineament density map that predicts favorable zones for hydrothermal mineral occurrences and quantify spatial associations between the known hydrothermal mineral deposits. In the process of lineament extraction a number of image processing techniques were applied. The extracted lineaments were imported into MapGIS software and a suitable grid of 100 m×100 m was chosen. The Kriging method was used to create the lineament density map of the area. The results show that remote sensing data could be useful to extract the lineaments in the area. These lineaments are closely correlated with the faults obtained through other geological investigation methods. On comparing with field data the lineament-density map identifies two important high prospective zones, where large-scale deposits are already existing. In addition the map highlights unrecognized target areas that require follow up investigation.展开更多
ABSTRACT The geologic features indicative of Cu, Pb, Zn mineral deposits in a area are fractures (structure), and host rock sediments. Datasets used include Cu, Pb, Zn deposit points record, geological data, remote ...ABSTRACT The geologic features indicative of Cu, Pb, Zn mineral deposits in a area are fractures (structure), and host rock sediments. Datasets used include Cu, Pb, Zn deposit points record, geological data, remote sensing imagery (Landsat TM5). The mineral potential of the study area is assessed by means of GIS based geodata integration techniques for generating predictive maps. GIS predictive model for Cu, Pb, Zn potential was carried out in this study area (Weixi) using weight of evidence. The weights of evidence modeling techniques is the data driven method in which the spatial associations of the indicative geologic features with the known mineral occurrences in the area are quantified, and weights statistically assigned to the geologic features. The best predictive map generated by this method defines 24 % the area having potential for Cu, Pb, Zn mineralization further exploration work.展开更多
Identification and quantitative prediction of large and superlarge mineral deposits of solid mineral resources using the mineral resource prediction theory and method with comprehensive information is carried out nati...Identification and quantitative prediction of large and superlarge mineral deposits of solid mineral resources using the mineral resource prediction theory and method with comprehensive information is carried out nationwide in China at a scale of 1∶5 000 000. Using deposit concentrated regions as the model units and concentrated mineralization anomaly regions as prediction units, the prediction is performed on GIS platform. The technical route and research method of locating large and superlarge mineral deposits and principle of compiling attribute table of independent variables and functional variables are proposed. Upon methodology study, the qualitative locating and quantitative predicting mineral deposits are carried out with quantitative theory Ⅲ and characteristic analysis, respectively, and the advantage and disadvantage of two methods are discussed. This research is significant for mineral resource prediction in ten provinces of western China.展开更多
The expert system for statistical prediction of mineral deposits on middle and large scales takes the system of scientific exploration theories, criteria and methods proposed by Professor Zhao Pengda as the field expe...The expert system for statistical prediction of mineral deposits on middle and large scales takes the system of scientific exploration theories, criteria and methods proposed by Professor Zhao Pengda as the field expert knowledge. At present the developed system focuses on two aspects: synthetic exploration and quantitative exploration. Among the three basic theories for the prediction of deposits, it highlights the applications of seeking anomaly theory. This system is characteristic in the determination of geological background, the study of geological anomalies and the delineation of geological background, the study of geological anomalies and the delineation of mineralization anomalies. The system combines closely the knowledge base, method base and database .integrates the input and output information of multi - sources and mul-ti - variables , data , graphs and imagine processing system and inquiring system as a whole . So the system can meet in general all kinds of demands in statistical prediction of mineral deposits . Since the statistical prediction of mineral resources is a kind of systematic engineering pro ject , a further study should be carried out on the fields of theoretical exploration and ster eo - exploration on the basis of unceasingly perfecting the above-mentioned fields in order to establish a comprehensive intelligent system for scientific exploration , to provide new methods , new techniques and new ideas for fast prospecting appraisal of mineral resources .展开更多
This paper presents a nonlinear multidimensional scaling model, called kernelized fourth quantifica- tion theory, which is an integration of kernel techniques and the fourth quantification theory. The model can deal w...This paper presents a nonlinear multidimensional scaling model, called kernelized fourth quantifica- tion theory, which is an integration of kernel techniques and the fourth quantification theory. The model can deal with the problem of mineral prediction without defining a training area. In mineral target prediction, the pre-defined statistical cells, such as grid cells, can be implicitly transformed using kernel techniques from input space to a high-dimensional feature space, where the nonlinearly separable clusters in the input space are ex- pected to be linearly separable. Then, the transformed cells in the feature space are mapped by the fourth quan- tifieation theory onto a low-dimensional scaling space, where the sealed cells can be visually clustered according to their spatial locations. At the same time, those cells, which are far away from the cluster center of the majority of the sealed cells, are recognized as anomaly cells. Finally, whether the anomaly cells can serve as mineral potential target cells can be tested by spatially superimposing the known mineral occurrences onto the anomaly ceils. A case study shows that nearly all the known mineral occurrences spatially coincide with the anomaly cells with nearly the smallest scaled coordinates in one-dimensional sealing space. In the case study, the mineral target cells delineated by the new model are similar to those predicted by the well-known WofE model.展开更多
Gengma region, Sanjiang district is known to have some large-scale gold deposits. GIS predictive model for hydrothermal gold potential was carried out in this region using weights of evidence modeling technique. Datas...Gengma region, Sanjiang district is known to have some large-scale gold deposits. GIS predictive model for hydrothermal gold potential was carried out in this region using weights of evidence modeling technique. Datasets used include large-scale hydrothermal gold deposit records, geological, geophysical and remote sensing imagery. Based on the geological and mineral characteristics of areas with known gold occurrences in Sanjiang, several geological features were thought to be indicative of areas with potential for the occurrence of hydrothermal gold deposits. Indicative features were extracted from geoexploration datasets for use as input in the predictive model. The features include host rock lithology, geologic structures, wallrock alteration and associated (volcanic-plutonic) igneous rocks. To determine which of the indicative geological features are important spatial predictors of area with potential for gold deposits, spatial analysis was done through the modeling method. The input maps were buffered and the optimum distance of spatial association for each geological feature was determined by calculating the contrast and studentized contrast. Five feature maps were converted to binary predictor patterns and used as evidential layers for predictive modeling. The binary patterns were integrated in two combinations, each of which consists of four patterns in order to avoid over prediction due to the effect of duplicate features in the two structural evidences. The two produced potential maps define almost similar favorable zones. Areas of intersections between these zones in the two potential maps placed the highest predictive favorable zones in the region.展开更多
The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 s...The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 small-scale deposits, and 220 mineralized occurrences. The prediction types of mineral resources of nickel deposits are magmatic type, marine sedimentary type and regolith type. The formation age is from the Neoarchean to the Cenozoic with two peaks in the Neoproterozoic and the late Paleozoic. The nickel deposits formed in the Neoproterozoic are located on the margin of the North China Block and Yangtze Block, and those formed in the late Paleozoic are mainly distributed in the Central Asian Orogenic Belt (CAOB), Emeishan and the Tarim Large Igneous Provinces (LIPs). Magmatic nickel deposits are mainly related with broken-up continental margin, post-collision extension of the orogenic belt and mantle plume. According to different tectonic backgrounds and main characteristics of magmatism, the Ni-Cu-Co-PGE metallogenie series types of ore deposits related with mantle-derived mafic-ultramafic rocks can be divided into 4 subtypes: (1) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the broken-up continental margin, (2) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in mantle plume magmatism, (3) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the subduction of the orogenic belt, and (4) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in post-collision extension of the orogenic belt. We have discussed in this paper the typical characteristics and metaliogenic models for Neoproterozoic Ni-Cu-(PGE) deposits related with broken-up continental margin, Cambrian marine sedimentary Ni-Mo-V deposits related with black shale, early Permian Ni-Cu deposits related with post-collision extension of the orogenic belt, late Permian Ni-Cu-(PGE) deposits related with Large Igneous Provinces (LIPs), and Cenozoic Ni-Au deposits related with regolith. The broken-up continental margin, mantle plume and post-collision extension of the orogenic belt are important ore- forming geological backgrounds, and the discordogenic fault, mafic-ultramafic intrusion, high MgO primitive magma (high-MgO basaltic magma), deep magmatism, sulfur saturation and sulfide segregation are 6 important geological conditions for the magmatic nickel deposits.展开更多
The multivariate information comprehensive processing technique is especially important at present to the digital mineral prospecting. However, the GIS-based weights of evidence have provided us with a powerful tool f...The multivariate information comprehensive processing technique is especially important at present to the digital mineral prospecting. However, the GIS-based weights of evidence have provided us with a powerful tool for the quantitative assessment of mineral resource potential. In this paper, the mineralization model is established, based on the achievements made by previous researchers, to mend such deficiencies as few references on ore fields in Yujiacun, Yunnan Province and the shortage of quantitative prediction and assessment of mineral resources. In addition, the weights of evidence are used to make a systematic quantitative prediction and assessment of mineral resources there, so that 2 mineral prospecting target areas of grade Ⅰand 8 mineral prospecting target areas of grade Ⅱ are delineated, providing the further mineral resource exploration with the basis for the selection of mineral deposits.展开更多
Mineralisation is the result of the coupled multi-geodynamic processes in the crust. The coupled mechano-thermo-hydrological (MTH) processes are the basic physical processes that govern the location of the hydrother...Mineralisation is the result of the coupled multi-geodynamic processes in the crust. The coupled mechano-thermo-hydrological (MTH) processes are the basic physical processes that govern the location of the hydrothermal mineralization, which can be simulated in the computer by using of the numerical codes, such as FLAC. The numerical modeling results can be used not only to explain the features of existing ore deposits, but also to predict the fhvorable mineralization locations. This paper has summarized the basic equations describing coupled MHT processes in the water-saturated porous rocks, the principles of FLAC, and its application to the MHT processes related to copper mineralization in the Fenghuangshan ore field. We used the FLAC to simulate the syn-deformation cooling and fluid flowing evolution after the intrusion was emplaced and solidified. The modeling results suggest a most prospective exploration area where the subsequent exploration supported the prediction and the test bore hole disclosed the high quality copper ore bodies in the target, demonstrating a positive role of the numerical MTH modeling in facilitating predictive ore discovery.展开更多
The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction:(1)use of the jackknife for bias elimination in regional mineral potential assessments;(2)estimating t...The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction:(1)use of the jackknife for bias elimination in regional mineral potential assessments;(2)estimating total amounts of metal from mineral potential maps;(3)fractal/multifractal modeling of mineral deposit density data in permissive areas;and(4)worldwide and large-areas metal size-frequency distribution modeling.The techniques described in this paper remain tentative because they have not been widely researched and applied in mineral potential studies.Although most of the content of this paper has previously been published,several perspectives for further research are suggested.展开更多
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金supported by National Key Research and Development Program(Grant No.2016YFC0501102)National Science and Technology Major Project(Grant No.2016ZX05066-001)
文摘The West Mine of the Bayan Obo deposit, located in the northern-central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb-REE-Fe) mineral resources. This paper presents a combined method to explore metallogenic correlation of the Nb-REE-Fe mineralization at the Bayan Obo West Mine. The method integrates factor analysis and Back Propagation (BP) neural network technology into processing and modeling of geological data. In this study, the Nb and REE contents of samples were transformed into discrete values to analyze the correlations among the metallogenic elements. The results show weak mineralization correlations between Nb and REEs. Nb and U are closely related in the geochemical patterns, while Fe is closely related to both Th and Mn. LREEs are an important factor for the mineralization of the Bayan Obo deposit, while Fe and Nb can be considered as the results of passive mineralization. On the basis of a metallogenic correlation analysis, the factors affecting the Fe-REE-Nb mineralization were extracted, and the Nb mineralization model was established by the BP neural network. Based on the BP neural network data computing, the variability of the Nb concentration displays a coupled multi-factor nonlinear relationship, which can be used to reveal the inherent metallogenic elemental regularities and predict the degree of element mineralization enrichment in the mining area.
文摘This paper introduces the formation mechanism and synthetic information prediction of large and superlarge deposits in Shandong Province by analyzing and studying on the GIS platform. The authors established a prospecting model of synthetic information from large and superlarge gold deposit concentration region, and the multi-source spatial database from concentration region of deposits and anomalies. On the basis of the spatial database, a target map layer, a model map layer and a predictive map layer were set up. Based on these map layers, geological variables of the model unit and predictive unit were extracted, then launched location and quantitative prediction of the gold deposit concentration region. The achievement of predicting large and superlarge deposits by the GIS platform has enabled the authors to design automation (or semi-automatic) interpretation subsystems, namely geophysics, geochemistry, geologic prospecting and comprehensive prognosis, and a set of the applicable GIS software for mineral resources prognosis of synthetic information.
文摘This paper presents a synthetic analysis method for multi sourced g eo logical data from geographic information system (GIS). In the previous practices of mineral resources prediction, a usually adopted methodology has been sta tistical analysis of cells delimitated based on thoughts of random sampling. Tha t might lead to insufficient utilization of local spatial information, for a cel l is treated as a point without internal structure. We now take “cell clusters ”, i. e. , spatial associations of cells, as basic units of statistics, thus th e spatial configuration information of geological variables is easier to be dete cted and utilized, and the accuracy and reliability of prediction are improved. We build a linear multi discriminating model for the clusters via genetic algor ithm. Both the right judgment rates and the in class vs. between class distan ce ratios are considered to form the evolutional adaptive values of the populati on. An application of the method in gold mineral resources prediction in east Xi njiang, China is presented.
文摘Metallogenic prognosis of synthetic information uses the geological body and the mineral resource body as a statistical unit to interpret synthetically the information of geology, geophysics, geochemistry and remote sensing from the evolution of geology and puts all the information into one entire system by drawing up digitalized interpretation maps of the synthetic information. On such basis, different grades and types of mineral resource prospecting models and predictive models of synthetic information can be established. Hence, a new integrated prediction system will be formed of metallogenic prognosis (qualitative prediction), mineral resources statistic prediction (determining targets) and mineral resources prediction (determining resources amount).
基金funded by a pilot project entitled“Deep Geological Survey of Benxi-Linjiang Area”(1212011220247)of the 3D Geological Mapping and Deep Geological Survey of China Geological Survey。
文摘A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,and rotation)to enhance the number of training data for the model.A window area is used to extract the spatial distribution characteristics of soil geochemistry and measure their correspondence with the occurrence of known subsurface deposits.Prospecting prediction is achieved by matching the characteristics of the window area of an unknown area with the relationships established in the known area.This method can efficiently predict mineral prospective areas where there are few ore deposits used for generating the training dataset,meaning that the deep-learning method can be effectively used for deposit prospecting prediction.Using soil active geochemical measurement data,this method was applied in the Daqiao area,Gansu Province,for which seven favorable gold prospecting target areas were predicted.The Daqiao orogenic gold deposit of latest Jurassic and Early Jurassic age in the southern domain has more than 105 t of gold resources at an average grade of 3-4 g/t.In 2020,the project team drilled and verified the K prediction area,and found 66 m gold mineralized bodies.The new method should be applicable to prospecting prediction using conventional geochemical data in other areas.
文摘Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 pixels subscene acquired on 21 March 2000 covering the northwestern part of Yunnan Province has been digitally processed using ER Mapper software. This article aims to produce lineament density map that predicts favorable zones for hydrothermal mineral occurrences and quantify spatial associations between the known hydrothermal mineral deposits. In the process of lineament extraction a number of image processing techniques were applied. The extracted lineaments were imported into MapGIS software and a suitable grid of 100 m×100 m was chosen. The Kriging method was used to create the lineament density map of the area. The results show that remote sensing data could be useful to extract the lineaments in the area. These lineaments are closely correlated with the faults obtained through other geological investigation methods. On comparing with field data the lineament-density map identifies two important high prospective zones, where large-scale deposits are already existing. In addition the map highlights unrecognized target areas that require follow up investigation.
文摘ABSTRACT The geologic features indicative of Cu, Pb, Zn mineral deposits in a area are fractures (structure), and host rock sediments. Datasets used include Cu, Pb, Zn deposit points record, geological data, remote sensing imagery (Landsat TM5). The mineral potential of the study area is assessed by means of GIS based geodata integration techniques for generating predictive maps. GIS predictive model for Cu, Pb, Zn potential was carried out in this study area (Weixi) using weight of evidence. The weights of evidence modeling techniques is the data driven method in which the spatial associations of the indicative geologic features with the known mineral occurrences in the area are quantified, and weights statistically assigned to the geologic features. The best predictive map generated by this method defines 24 % the area having potential for Cu, Pb, Zn mineralization further exploration work.
文摘Identification and quantitative prediction of large and superlarge mineral deposits of solid mineral resources using the mineral resource prediction theory and method with comprehensive information is carried out nationwide in China at a scale of 1∶5 000 000. Using deposit concentrated regions as the model units and concentrated mineralization anomaly regions as prediction units, the prediction is performed on GIS platform. The technical route and research method of locating large and superlarge mineral deposits and principle of compiling attribute table of independent variables and functional variables are proposed. Upon methodology study, the qualitative locating and quantitative predicting mineral deposits are carried out with quantitative theory Ⅲ and characteristic analysis, respectively, and the advantage and disadvantage of two methods are discussed. This research is significant for mineral resource prediction in ten provinces of western China.
基金The study is supported by the Ministry of Geology and Mineral Resources
文摘The expert system for statistical prediction of mineral deposits on middle and large scales takes the system of scientific exploration theories, criteria and methods proposed by Professor Zhao Pengda as the field expert knowledge. At present the developed system focuses on two aspects: synthetic exploration and quantitative exploration. Among the three basic theories for the prediction of deposits, it highlights the applications of seeking anomaly theory. This system is characteristic in the determination of geological background, the study of geological anomalies and the delineation of geological background, the study of geological anomalies and the delineation of mineralization anomalies. The system combines closely the knowledge base, method base and database .integrates the input and output information of multi - sources and mul-ti - variables , data , graphs and imagine processing system and inquiring system as a whole . So the system can meet in general all kinds of demands in statistical prediction of mineral deposits . Since the statistical prediction of mineral resources is a kind of systematic engineering pro ject , a further study should be carried out on the fields of theoretical exploration and ster eo - exploration on the basis of unceasingly perfecting the above-mentioned fields in order to establish a comprehensive intelligent system for scientific exploration , to provide new methods , new techniques and new ideas for fast prospecting appraisal of mineral resources .
基金supported by National Natural Science Foundation of China (No.40872193)
文摘This paper presents a nonlinear multidimensional scaling model, called kernelized fourth quantifica- tion theory, which is an integration of kernel techniques and the fourth quantification theory. The model can deal with the problem of mineral prediction without defining a training area. In mineral target prediction, the pre-defined statistical cells, such as grid cells, can be implicitly transformed using kernel techniques from input space to a high-dimensional feature space, where the nonlinearly separable clusters in the input space are ex- pected to be linearly separable. Then, the transformed cells in the feature space are mapped by the fourth quan- tifieation theory onto a low-dimensional scaling space, where the sealed cells can be visually clustered according to their spatial locations. At the same time, those cells, which are far away from the cluster center of the majority of the sealed cells, are recognized as anomaly cells. Finally, whether the anomaly cells can serve as mineral potential target cells can be tested by spatially superimposing the known mineral occurrences onto the anomaly ceils. A case study shows that nearly all the known mineral occurrences spatially coincide with the anomaly cells with nearly the smallest scaled coordinates in one-dimensional sealing space. In the case study, the mineral target cells delineated by the new model are similar to those predicted by the well-known WofE model.
文摘Gengma region, Sanjiang district is known to have some large-scale gold deposits. GIS predictive model for hydrothermal gold potential was carried out in this region using weights of evidence modeling technique. Datasets used include large-scale hydrothermal gold deposit records, geological, geophysical and remote sensing imagery. Based on the geological and mineral characteristics of areas with known gold occurrences in Sanjiang, several geological features were thought to be indicative of areas with potential for the occurrence of hydrothermal gold deposits. Indicative features were extracted from geoexploration datasets for use as input in the predictive model. The features include host rock lithology, geologic structures, wallrock alteration and associated (volcanic-plutonic) igneous rocks. To determine which of the indicative geological features are important spatial predictors of area with potential for gold deposits, spatial analysis was done through the modeling method. The input maps were buffered and the optimum distance of spatial association for each geological feature was determined by calculating the contrast and studentized contrast. Five feature maps were converted to binary predictor patterns and used as evidential layers for predictive modeling. The binary patterns were integrated in two combinations, each of which consists of four patterns in order to avoid over prediction due to the effect of duplicate features in the two structural evidences. The two produced potential maps define almost similar favorable zones. Areas of intersections between these zones in the two potential maps placed the highest predictive favorable zones in the region.
基金funded by the National Natural Science Fund for Youth (Grant No.41402070,41372101)grant from Chinese Geological Survey Grants (Grant No.1212010633903,1212011220369,12120114039601,1212011121037)open funds from the key laboratory of western mineral resources and geological engineering of ministry of education,Chang’an university (Grant No.310826151138)
文摘The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 small-scale deposits, and 220 mineralized occurrences. The prediction types of mineral resources of nickel deposits are magmatic type, marine sedimentary type and regolith type. The formation age is from the Neoarchean to the Cenozoic with two peaks in the Neoproterozoic and the late Paleozoic. The nickel deposits formed in the Neoproterozoic are located on the margin of the North China Block and Yangtze Block, and those formed in the late Paleozoic are mainly distributed in the Central Asian Orogenic Belt (CAOB), Emeishan and the Tarim Large Igneous Provinces (LIPs). Magmatic nickel deposits are mainly related with broken-up continental margin, post-collision extension of the orogenic belt and mantle plume. According to different tectonic backgrounds and main characteristics of magmatism, the Ni-Cu-Co-PGE metallogenie series types of ore deposits related with mantle-derived mafic-ultramafic rocks can be divided into 4 subtypes: (1) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the broken-up continental margin, (2) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in mantle plume magmatism, (3) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the subduction of the orogenic belt, and (4) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in post-collision extension of the orogenic belt. We have discussed in this paper the typical characteristics and metaliogenic models for Neoproterozoic Ni-Cu-(PGE) deposits related with broken-up continental margin, Cambrian marine sedimentary Ni-Mo-V deposits related with black shale, early Permian Ni-Cu deposits related with post-collision extension of the orogenic belt, late Permian Ni-Cu-(PGE) deposits related with Large Igneous Provinces (LIPs), and Cenozoic Ni-Au deposits related with regolith. The broken-up continental margin, mantle plume and post-collision extension of the orogenic belt are important ore- forming geological backgrounds, and the discordogenic fault, mafic-ultramafic intrusion, high MgO primitive magma (high-MgO basaltic magma), deep magmatism, sulfur saturation and sulfide segregation are 6 important geological conditions for the magmatic nickel deposits.
文摘The multivariate information comprehensive processing technique is especially important at present to the digital mineral prospecting. However, the GIS-based weights of evidence have provided us with a powerful tool for the quantitative assessment of mineral resource potential. In this paper, the mineralization model is established, based on the achievements made by previous researchers, to mend such deficiencies as few references on ore fields in Yujiacun, Yunnan Province and the shortage of quantitative prediction and assessment of mineral resources. In addition, the weights of evidence are used to make a systematic quantitative prediction and assessment of mineral resources there, so that 2 mineral prospecting target areas of grade Ⅰand 8 mineral prospecting target areas of grade Ⅱ are delineated, providing the further mineral resource exploration with the basis for the selection of mineral deposits.
文摘Mineralisation is the result of the coupled multi-geodynamic processes in the crust. The coupled mechano-thermo-hydrological (MTH) processes are the basic physical processes that govern the location of the hydrothermal mineralization, which can be simulated in the computer by using of the numerical codes, such as FLAC. The numerical modeling results can be used not only to explain the features of existing ore deposits, but also to predict the fhvorable mineralization locations. This paper has summarized the basic equations describing coupled MHT processes in the water-saturated porous rocks, the principles of FLAC, and its application to the MHT processes related to copper mineralization in the Fenghuangshan ore field. We used the FLAC to simulate the syn-deformation cooling and fluid flowing evolution after the intrusion was emplaced and solidified. The modeling results suggest a most prospective exploration area where the subsequent exploration supported the prediction and the test bore hole disclosed the high quality copper ore bodies in the target, demonstrating a positive role of the numerical MTH modeling in facilitating predictive ore discovery.
文摘The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction:(1)use of the jackknife for bias elimination in regional mineral potential assessments;(2)estimating total amounts of metal from mineral potential maps;(3)fractal/multifractal modeling of mineral deposit density data in permissive areas;and(4)worldwide and large-areas metal size-frequency distribution modeling.The techniques described in this paper remain tentative because they have not been widely researched and applied in mineral potential studies.Although most of the content of this paper has previously been published,several perspectives for further research are suggested.