The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an effic...The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.展开更多
A method of dry grinding muscovite based on the use of knife-mills is reported.It was possible to produce mica with a particle size below 100 and 45μm.After grinding,the samples were submitted to sonication treatment...A method of dry grinding muscovite based on the use of knife-mills is reported.It was possible to produce mica with a particle size below 100 and 45μm.After grinding,the samples were submitted to sonication treatment,which promoted delamination of the material.The particle size distribution shows that sonicated mica has more particles in the size range 10-50μm than does non-sonicated mica have. This also indicates a decrease in the average particle size.Characterization of the treated muscovite by scanning electron microscopy revealed a highly delaminated material with a plate-like structure.The products were characterized by chemical analysis and X-ray diffraction,too.This mica has already been used for the synthesis of pearlescent pigments.展开更多
基金Supported by the National Natural Science Foundation of China(21336004)the State Key Research Plan of the Ministry of Science and Technology(2013BAC12B03)
文摘The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.
文摘A method of dry grinding muscovite based on the use of knife-mills is reported.It was possible to produce mica with a particle size below 100 and 45μm.After grinding,the samples were submitted to sonication treatment,which promoted delamination of the material.The particle size distribution shows that sonicated mica has more particles in the size range 10-50μm than does non-sonicated mica have. This also indicates a decrease in the average particle size.Characterization of the treated muscovite by scanning electron microscopy revealed a highly delaminated material with a plate-like structure.The products were characterized by chemical analysis and X-ray diffraction,too.This mica has already been used for the synthesis of pearlescent pigments.