The Hongtoushan Volcanogenic Massive Sulphide Deposit(VMSD)occurs in the Hunbei granite-greenstone terrane,Liaoning Province,NE China.Rocks in the mining area have been metamorphosed around 3.0-2.8 Ga to upper amphi...The Hongtoushan Volcanogenic Massive Sulphide Deposit(VMSD)occurs in the Hunbei granite-greenstone terrane,Liaoning Province,NE China.Rocks in the mining area have been metamorphosed around 3.0-2.8 Ga to upper amphibolite facies at temperatures between 600℃and 650℃.Cordierite-anthophyllite gneiss(CAG)in the Hongtoushan mining area,which occurs hundreds of meters below the ore horizon,corresponds to the metamorphosed semi-conformable alteration zone of the VMSD hydrothermal system,whereas the one immediately below the main ore layer represents the metamorphosed pipe-like alteration zone.Whole-rock oxygen isotope signatures were well preserved in both types of CAGs,although the mineral components have been entirely changed during regional metamorphism.Therefore,whole-rock oxygen isotopes can be used to estimate the formation temperature of both types of alteration zone.Calculations show that the semi-conformable and pipelike alteration zones for the Hongtoushan submarine hydrothermal system were formed at 290-360℃and 285-320°C,respectively,whereas estimates for the former were slightly higher than that of the latter,indicating that the semi-conformable alteration zone represents the deep part of the Hongtoushan seafloor hydrothermal system,while the pipe-like alteration zone represents the discharge conduits for metal-rich fluids,which is closer to the seafloor.展开更多
This paper elucidates the relationship between landslides, geologic structures, and hydrothermal alteration zones based primarily on X-ray powder diffraction and uniaxial compressive strength tests on weakly weathered...This paper elucidates the relationship between landslides, geologic structures, and hydrothermal alteration zones based primarily on X-ray powder diffraction and uniaxial compressive strength tests on weakly weathered and hydrothermally altered rocks from the Ohekisawa-Shikerebembetsugawa landslide area in Teshikaga Town, Hokkaido, Japan. The OHS (Ohekisawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Shikerepe Formation within a homocline, and also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing mordenite zone. The SHS (Shikerebembetsugawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Hanakushibe Formation within wavy folds and was also controlled by a cap rock of Teshikaga Volcano Somma Lava. The SHS occurred also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing laumontite zone. The mechanical properties of smectite, smectite-bearing mordenite, and smectite-bearing laumontite zone weakly weathered rocks indicate that they are very weak, soft rocks. These landslides are regarded as HAZLs (hydrothermal alteration zone landslides). The hydrothermal alteration yielding smectite is thus closely related to these two ancient landslides, suggesting that the potential for HAZLs within a hydrothermal area can be assessed based on the swelling clay mineral-beating hydrothermal alteration types, dip slope, and cap rock.展开更多
1 Introduction The large clusters of Zn-Pb deposits in northeastern Yunnan,located in the southwestern margin of the Yangtze Block,are an important part of the Sichuan-YunnanGuizhou Pb-Zn Poly-metallic Metallogenic Tr...1 Introduction The large clusters of Zn-Pb deposits in northeastern Yunnan,located in the southwestern margin of the Yangtze Block,are an important part of the Sichuan-YunnanGuizhou Pb-Zn Poly-metallic Metallogenic Triangle Area展开更多
According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite ...According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite can be classified within the Tongchang porphyry copper deposit, Dexing County, East China. One is a kind of hydrothermally altered minerals within the hydrothermal alteration zone, including altered granodiorite\|porphyry and altered metamorphic tuffaceous phyllite near the contact zone with porphyry rockbody. The illite crystallinity and expandability are mainly affected by water/rock ratio or fluid flux, and hydrothermal illite is formed by illitization of plagioclase and/or micas during hydrothermal fluid evolution within the porphyry body and near the contact zone with wall rocks. The other is a product of low\|grade metamorphism itself by illitization of smectite, whose crystallinity index is lower than the hydrothermal illite and which is of 2M\-1 polytype with no swelling layer, in the altered metamorphic tuffaceous phyllite far from porphyry rockbody (>2 km). Moreover, the negative correlation between illite index and copper grade indicates that, within the alteration zone, the smaller the illite crystallinity, the stronger the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are controlled mainly by temperature and time.展开更多
The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as t...The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as two subordinate sets of faults trending NW to WNW for the first one and NE for the second one. These faults represent the shear zones affected by magmatic (syngenetic) as well as hydrothermal (epigenetic) activities causing alteration of the granitic rocks. The most common alteration features are albitization, greisenization and koalinitization. The mass balance calculations of the studied altered samples show enrichments in Zr, Y, Ni, U, Th and Ga and depletions in Zn, Sr, Nb, Ba, Pb, Cu and V. Only the greisenized samples exhibit a significant enrichment in Nb, ∑REE budget and pronounced lanthanide tetrad effect (M-type), especially TE1,4, while weakly expressed tetrad effects are for the other albitized and koalinitized samples. Mineralogically, the common accessory minerals in the altered samples include samarskite-(Y), betafite, uranothorite, zircon, fluorite and cassiterite. The greisenized granites contain high eU and eTh than the other altered types, where they are characterized by an assemblage of the radioactive minerals; samarskite-(Y), betafite, uranothorite in addition to zircon. The inter-element relationships between U and Th and also their ratios illustrate that the radioelement distribution in these granites is mainly governed by magmatic processes, in addition to post-magmatic ones. The distribution of chemical elements and the fractionation of some isovalents within the shear zone are largely controlled by the newly formed mineral phases. With respect to uranium mobilization, uranium migrated from the host alkali feldspar granites of G. Abu Garadi, while the shear zones acted as traps for the migrated uranium. Moreover, U migrated in the shear zone during greisenization and albitization, and migrated out during koalinitization.展开更多
基金supported financially by the National Basic Research Program of the People's Republic of China (2006CB403501)the National Natural Science Foundation of China(Nos 40872050,40872064)
文摘The Hongtoushan Volcanogenic Massive Sulphide Deposit(VMSD)occurs in the Hunbei granite-greenstone terrane,Liaoning Province,NE China.Rocks in the mining area have been metamorphosed around 3.0-2.8 Ga to upper amphibolite facies at temperatures between 600℃and 650℃.Cordierite-anthophyllite gneiss(CAG)in the Hongtoushan mining area,which occurs hundreds of meters below the ore horizon,corresponds to the metamorphosed semi-conformable alteration zone of the VMSD hydrothermal system,whereas the one immediately below the main ore layer represents the metamorphosed pipe-like alteration zone.Whole-rock oxygen isotope signatures were well preserved in both types of CAGs,although the mineral components have been entirely changed during regional metamorphism.Therefore,whole-rock oxygen isotopes can be used to estimate the formation temperature of both types of alteration zone.Calculations show that the semi-conformable and pipelike alteration zones for the Hongtoushan submarine hydrothermal system were formed at 290-360℃and 285-320°C,respectively,whereas estimates for the former were slightly higher than that of the latter,indicating that the semi-conformable alteration zone represents the deep part of the Hongtoushan seafloor hydrothermal system,while the pipe-like alteration zone represents the discharge conduits for metal-rich fluids,which is closer to the seafloor.
文摘This paper elucidates the relationship between landslides, geologic structures, and hydrothermal alteration zones based primarily on X-ray powder diffraction and uniaxial compressive strength tests on weakly weathered and hydrothermally altered rocks from the Ohekisawa-Shikerebembetsugawa landslide area in Teshikaga Town, Hokkaido, Japan. The OHS (Ohekisawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Shikerepe Formation within a homocline, and also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing mordenite zone. The SHS (Shikerebembetsugawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Hanakushibe Formation within wavy folds and was also controlled by a cap rock of Teshikaga Volcano Somma Lava. The SHS occurred also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing laumontite zone. The mechanical properties of smectite, smectite-bearing mordenite, and smectite-bearing laumontite zone weakly weathered rocks indicate that they are very weak, soft rocks. These landslides are regarded as HAZLs (hydrothermal alteration zone landslides). The hydrothermal alteration yielding smectite is thus closely related to these two ancient landslides, suggesting that the potential for HAZLs within a hydrothermal area can be assessed based on the swelling clay mineral-beating hydrothermal alteration types, dip slope, and cap rock.
基金supported by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The large clusters of Zn-Pb deposits in northeastern Yunnan,located in the southwestern margin of the Yangtze Block,are an important part of the Sichuan-YunnanGuizhou Pb-Zn Poly-metallic Metallogenic Triangle Area
文摘According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite can be classified within the Tongchang porphyry copper deposit, Dexing County, East China. One is a kind of hydrothermally altered minerals within the hydrothermal alteration zone, including altered granodiorite\|porphyry and altered metamorphic tuffaceous phyllite near the contact zone with porphyry rockbody. The illite crystallinity and expandability are mainly affected by water/rock ratio or fluid flux, and hydrothermal illite is formed by illitization of plagioclase and/or micas during hydrothermal fluid evolution within the porphyry body and near the contact zone with wall rocks. The other is a product of low\|grade metamorphism itself by illitization of smectite, whose crystallinity index is lower than the hydrothermal illite and which is of 2M\-1 polytype with no swelling layer, in the altered metamorphic tuffaceous phyllite far from porphyry rockbody (>2 km). Moreover, the negative correlation between illite index and copper grade indicates that, within the alteration zone, the smaller the illite crystallinity, the stronger the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are controlled mainly by temperature and time.
文摘The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as two subordinate sets of faults trending NW to WNW for the first one and NE for the second one. These faults represent the shear zones affected by magmatic (syngenetic) as well as hydrothermal (epigenetic) activities causing alteration of the granitic rocks. The most common alteration features are albitization, greisenization and koalinitization. The mass balance calculations of the studied altered samples show enrichments in Zr, Y, Ni, U, Th and Ga and depletions in Zn, Sr, Nb, Ba, Pb, Cu and V. Only the greisenized samples exhibit a significant enrichment in Nb, ∑REE budget and pronounced lanthanide tetrad effect (M-type), especially TE1,4, while weakly expressed tetrad effects are for the other albitized and koalinitized samples. Mineralogically, the common accessory minerals in the altered samples include samarskite-(Y), betafite, uranothorite, zircon, fluorite and cassiterite. The greisenized granites contain high eU and eTh than the other altered types, where they are characterized by an assemblage of the radioactive minerals; samarskite-(Y), betafite, uranothorite in addition to zircon. The inter-element relationships between U and Th and also their ratios illustrate that the radioelement distribution in these granites is mainly governed by magmatic processes, in addition to post-magmatic ones. The distribution of chemical elements and the fractionation of some isovalents within the shear zone are largely controlled by the newly formed mineral phases. With respect to uranium mobilization, uranium migrated from the host alkali feldspar granites of G. Abu Garadi, while the shear zones acted as traps for the migrated uranium. Moreover, U migrated in the shear zone during greisenization and albitization, and migrated out during koalinitization.