期刊文献+
共找到345篇文章
< 1 2 18 >
每页显示 20 50 100
Coupling System for Food Wastes Anaerobic Digestion and Polyhydroxyalkanoates Production with Ralstonia eutropha 被引量:1
1
作者 堵国成 YU Jian 陈坚 《过程工程学报》 CAS CSCD 北大核心 2002年第2期161-166,共6页
A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic d... A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic digestion and their concentrations reached 5.5, 1.8, 27.4 and 32.7 g/L, respectively under appropriate digestion conditions. The fermentative acids were transferred through a dialysis membrane to an air-lift reactor for PHA synthesis by Ralstonia eutropha. Dry cell concentration and PHA content reached 22.7 g/L and 72.6%, respectively. The obtained PHA was a copolymer of b-hydroxybutyrate (HB) and b-hydroxyvalerate (HV) with 2.8% (mole ratio) of HV units in polymer. 展开更多
关键词 食物废弃物 发酵 有机酸 废水处理
下载PDF
Research Progress of Anaerobic Digestion Pretreatment of Antibiotic Waste
2
作者 Shengnan ZHAO Yanru CUI +6 位作者 Hai GAO Yeming ZHAO Fengxian PANG Xiaodong CHENG Jiao XIE Xin WANG Wei OU 《Asian Agricultural Research》 2018年第5期41-43,共3页
Anaerobic digestion is one of the effective ways to dispose of antibiotic pharmaceutical waste. However,the inhibition of antibiotics on anaerobic fermentation microorganisms seriously hinders the normal physiological... Anaerobic digestion is one of the effective ways to dispose of antibiotic pharmaceutical waste. However,the inhibition of antibiotics on anaerobic fermentation microorganisms seriously hinders the normal physiological activities of anaerobic microorganisms and then affects the efficiency of anaerobic digestion. In order to solve this problem,related scholars have done a lot of research. It has been found that pretreatment of anaerobic microorganisms and antibiotic pharmaceutical waste can significantly improve the efficiency of anaerobic digestion. In this paper,the current feasible pretreatment methods were summarized,and the application of different pretreatment methods was analyzed to provide reference for improving pretreatment methods and improving anaerobic biological treatment ability of antibiotic waste. 展开更多
关键词 Antibiotic waste pretreatment anaerobic digestion
下载PDF
Effects of Ultrasonic and Acid Pretreatment on Food Waste Disintegration and Volatile Fatty Acid Production
3
作者 Qinglian Wu Wanqian Guo +3 位作者 Shanshan Yang Haichao Luo Simai Peng Nanqi Ren 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第3期1-6,共6页
This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal c... This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal conditions of individual ultrasonic and acid pretreatment,and response surface method( RSM) is applied to optimize the conditions of the combination of ultrasonic and acid( UA) pretreatment. Results show that the optimal acid,ultrasonic and UA pretreatments conditions are individual pH 2,individual ultrasonic energy density of 1. 0 W / mL and the combination of ultrasonic energy density1. 11 W / mL and pH 1. 43,respectively. Correspondingly,the maximum disintegration degrees( DD) of 46. 90%,57. 38% and68. 83%are obtained by acid,ultrasonic and UA pretreatments,respectively. After optimizing pretreatment conditions,batch experiments are operated to produce VFA from raw and pretreated FW under anaerobic fermentation process. Both the maximum VFA production( 976. 17 mg COD / gV S) and VFA / SCOD( 72. 89%) are obtained with ultrasonic pretreatment, followed by UA pretreatment, non-pretreatment and acid pretreatment,respectively. This observation demonstrates that a higher acidity on acid and UA pretreatments inhibits the generation of VFA. Results suggest that ultrasonic pretreatment is preferable to promote the disintegration degree of FW and VFA production. 展开更多
关键词 food waste(FW) ultrasonic and acid pretreatment response surface method(RSM) anaerobic fermentation volatile fatty acid(VFA)
下载PDF
Biohythane production from two-stage anaerobic digestion of food waste:A review
4
作者 Xiaona An Ying Xu Xiaohu Dai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期334-349,共16页
The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anae... The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anaerobic digestion(TSAD),in which the FW is transformed to biohythane,a gaseous mixture of biomethane and biohydrogen.This review summarises the main characteristics of FW and describes the basic principle of TSAD.Moreover,the factors influencing the TSAD performance are identified,and an overview of the research status;economic aspects;and strategies such as pre-treatment,co-digestion,and regulation of microbial consortia to increase the biohythane yield from TSAD is provided.Additionally,the challenges and future considerations associated with the treatment of FW by TSAD are highlighted.This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment. 展开更多
关键词 Two-stage anaerobic digestion(TSAD) food waste(FW) Methane production Hydrogen production
原文传递
High-solid Anaerobic Co-digestion of Food Waste and Rice Straw for Biogas Production 被引量:6
5
作者 Pei Zhan-jiang Liu Jie +3 位作者 Shi Feng-mei Wang Su Gao Ya-bing Zhang Da-lei 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第4期61-66,共6页
Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different m... Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid(VS) concentration of more than 3 g VS · L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand(COD) and volatile fatty acids(VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 m L· g V· S-1 · d-1 at a mass ratio(FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than monodigestions in higher organic loading system. 展开更多
关键词 food waste high-solid anaerobic digestion
下载PDF
Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment 被引量:9
6
作者 Yongzhi Chi Yuyou Li +2 位作者 Xuening Fei ShaopoWang Hongying Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第8期1257-1265,共9页
Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency. Uniform design was applied to deter... Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency. Uniform design was applied to determine the combination of target temperature (110-210°C), microwave holding time (1-51 min), and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization. Maximum solubilization ratio (85.1%) of VSS was observed at 210°C with 0.2 g-NaOH/g-SS and 35 min holding time. The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP). Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge. The highest CMP was a 27% improvement over the control. In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge, a semi-continuous thermophilic reactor fed with pretreated TWAS without neutralization (at 170~C with 1 min holding time and 0.05 g NaOH/g SS) was stable and functioned well, with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%, respectively, which were higher than those of the control system. Additionally, methane yields (L@STP/g-CODaded, at standard temperature and pressure (STP) conditions of 0°C and 101.325 kPa) and (L@STP/g VSadad) increased by 17% and 13%, respectively, comoared to the control reactor. 展开更多
关键词 thickened waste activated sludge microwave pretreatment alkaline pretreatment thermophilic anaerobic digestion
原文传递
A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste 被引量:6
7
作者 Jey-R Sabado Ventura Jehoon Lee Deokjin Jahng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第6期1274-1283,共10页
An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1... An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%;S3 on the other hand decreased by 0.1% as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L.day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. 展开更多
关键词 community structure food waste methane production nutrient removal two-stage anaerobic digestion
原文传递
Impact on Acidification Characteristics of Anaerobic Digestion of Kitchen Waste by F/M
8
作者 Liu Yanping Xiao Xiong +2 位作者 Cui Yue Yuan Yu Lan Miao 《Meteorological and Environmental Research》 CAS 2018年第6期34-39,共6页
The effect of F/M on acidification characteristics during anaerobic digestion of kitchen waste was investigated. Under different F/M,p H,alkalinity,ethyl alcohol,volatile fatty acids(VFAs),and biogas production status... The effect of F/M on acidification characteristics during anaerobic digestion of kitchen waste was investigated. Under different F/M,p H,alkalinity,ethyl alcohol,volatile fatty acids(VFAs),and biogas production status of acidification effluent in 96 h were observed. The study results showed that the content of propionic acid + acetic acid reached 56%-80% when F/M≤1. 0,which was mainly known as propionic acid type of fermentation and was accompanied by methane. The value of alkalinity was only 3 000-4 000 mg/L,which indicated that the stability was weak in the system. When 1. 0 < F/M≤2. 5,the concentration of butyric acid + acetic acid was in the range of 77%-85%,and acid production rate per unit load was more than 250 mg VFAs/g VS,which was known as butyric acid type of fermentation. The fermentation type was stable and could provide more available VFAs for subsequent methanation processes because the value of alkalinity reached 5 650 mg/L. When F/M≥2. 5,the content of ethanol + acetic acid was 80%-92%,which was known as ethanol type of fermentation. And p H of 96 h was only 5. 0( F/M = 3. 0) and 4. 3(F/M =4.0),and acidification was serious and the stability was weak in the system,which would hinder the subsequent methanation process.Therefore,F/M influenced fermentation type,and it can provide a target product for subsequent methanation process by controlling F/M in a reasonable range. 展开更多
关键词 Kitchen waste anaerobic digestion food to microorganism ratios
下载PDF
Biogas Production from Co-Digestion of Grass with Food Waste
9
作者 Hamidatu S. Darimani Dinesh C. Pant 《Journal of Agricultural Chemistry and Environment》 2020年第1期27-36,共10页
Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the... Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35&#176C ± 2&#176C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only. 展开更多
关键词 GRASS CO-SUBSTRATE food waste anaerobic digestion BIOGAS
下载PDF
Wood waste biochar promoted anaerobic digestion of food waste:focusing on the characteristics of biochar and microbial community analysis 被引量:3
10
作者 Chao Zhang Rui Yang +4 位作者 Meichen Sun Shicheng Zhang Mingjing He Daniel C.W.Tsang Gang Luo 《Biochar》 SCIE 2022年第1期152-163,共12页
Anaerobic digestion(AD)has been considered as a promising technique for food waste(FW)recycling.However,the accumulation of volatile fatty acids(VFAs)restricts the stability of anaerobic reactors.The present study inv... Anaerobic digestion(AD)has been considered as a promising technique for food waste(FW)recycling.However,the accumulation of volatile fatty acids(VFAs)restricts the stability of anaerobic reactors.The present study investigated the use of biochar produced at different conditions(750℃-30 min,750℃-60 min,750℃-120 min,550℃-60 min,650℃-60 min,850℃-60 min,950℃-60 min)for enhancing the AD of FW.Batch experiments showed that all the biochar increased the methane production rates and biochar obtained at 750℃-60 min resulted in the highest enhance-ment by 21.5%.It was further showed surface oxygen-containing functional groups and graphitization degree of biochar were the critical factors for improving methane production.Microbial analysis showed that biochar addi-tion formed different microbial communities,and Methanosaeta,Romboutsia,and norank_f_Anaerolineaceae were enriched,which might be correlated with direct interspecies electron transfer(DIET).This research showed biochar could enhance the AD of FW and also revealed the main characteristics of biochar relating with the enhancement of AD. 展开更多
关键词 anaerobic digestion food waste Wood waste biochar Methane production Sustainable waste management
原文传递
Comparative investigations on pilot-scale anaerobic digestion of food waste at 30℃and 35℃
11
作者 Wang Long Zhu Baoning +3 位作者 Yuan Hairong Liu Yanping Zou Dexun Li Xiujin 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第1期109-117,共9页
Parallel pilot-scale anaerobic digestion systems were conducted to evaluate the influence of system temperatures(30℃and 35℃)on digestion performance,greenhouse gas control and economic efficiency.Biogas productions(... Parallel pilot-scale anaerobic digestion systems were conducted to evaluate the influence of system temperatures(30℃and 35℃)on digestion performance,greenhouse gas control and economic efficiency.Biogas productions(6.64-12.96 m3/d)and methane yields(0.46-0.61 m3/kg VS)of 35℃digestion system were significantly higher than those of 30℃digestion system with the organic loading rate(OLR)of 2.0-4.5 kg VS/m3·d.Two regression equations of methane yields with increasing OLRs were fitted at 30℃and 35℃to predict the methane production of practical food waste(FW)digestion plants.By analyzing process stability,the optimal operating OLRs of 35℃digestion system(4.0 kg VS/m3·d)was found to be higher than that of 30℃digestion system(3.0 kg VS/m3·d),indicating that the 35℃digestion system had better processing capacity.The greenhouse gas emission under corresponding optimal operating OLR of 35℃digestion system was also calculated to be better than that of 30℃digestion system.Even the system temperature of 30℃was found to be more suitable for the digestion where OLR was less than 3.0 kg VS/m3·d,a higher operational temperature of 35℃was still a better choice for conventional high-solid digestion. 展开更多
关键词 food waste anaerobic digestion PILOT-SCALE organic loading rate greenhouse gas economic efficiency
原文传递
Anaerobic digestion of food wastes for biogas production 被引量:4
12
作者 Xiguang Chen Rowena TRomano Ruihong Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2010年第4期61-72,共12页
Five types of food wastes were investigated as feedstock for a potential centralized anaerobic digester system in the area of Sacramento,California to produce biogas energy.The wastes were from a soup processing plant... Five types of food wastes were investigated as feedstock for a potential centralized anaerobic digester system in the area of Sacramento,California to produce biogas energy.The wastes were from a soup processing plant,a cafeteria,a commercial kitchen,a fish farm,and grease trap collection service.Digestibilities of the food wastes,individually and in mixtures,were conducted at mesophilic(35℃)and thermophilic(50℃)temperatures and at two food to microorganism ratios(F/M)of 0.5 and 1.0,for 28 days.A continuously fed mesophilic single-stage anaerobic digester was evaluated using a mixture of the five food wastes at organic loading rates of 0.5 to 1.0 g VS/L/d.In the batch digestion tests,fish and grease trap wastes required longer time to complete the digestion and had higher biogas yields than the other wastes.The continuously-fed digester required the addition of sodium hydroxide to maintain pH at proper levels in the digester.Alkalinity of about 2,500 mg CaCO3/L and pH above 7 was maintained by adding 0.2 g NaOH/g VS.The results of this study indicated that it was necessary to use the chemicals,such as NaOH,to control the pH of the single-stage anaerobic digester treating the food waste.For commercial applications,the cost of chemicals and proper management of additional salts in the digester effluent need to be carefully considered. 展开更多
关键词 anaerobic digestion bioconversion BIOGAS continuous digestion food waste
原文传递
Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China 被引量:38
13
作者 Jia Lin Jiane Zuo +5 位作者 Lili Gan Peng Li Fenglin Liu Kaijun Wang Lei Chen Hainan Gan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第8期1403-1408,共6页
The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated, which were 0.30, 0.56 m3 CH4/kgVS (volatile solids) with biodegrad... The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated, which were 0.30, 0.56 m3 CH4/kgVS (volatile solids) with biodegradabilities of 59.3% and 83.6%, respectively. Individual anaerobic digestion testes of FVW and FW were conducted at the organic loading rate (OLR) of 3 kg VS/(m3-day) using a lab-scale continuous stirred-tank reactor at 35°C. FVW could be digested stably with the biogas production rate of 2.17 ma/(m3-day) and methane production yield of 0.42 m3 CH4/kg VS. However, anaerobic digestion process for FW was failed due to acids accumulation. The effects of FVW: FW ratio on co-digestion stability and performance were further investigated at the same OLR. At FVW and FW mixing ratios of 2:1 and 1:1, the performance and operation of the digester were maintained stable, with no accumulation of volatile fatty acids (VFA) and ammonia. Changing the feed to a higher FW content in a ratio of FVW to FW 1:2, resulted in an increase in VFAs concentration to 1100-1200 rag/L, and the methanogenesis was slightly inhibited. At the optimum mixture ratio 1:1 for co-digestion of FVW with FW, the methane production yield was 0.49 m3 CH4/kg VS, and the volatile solids and soluble chemical oxygen demand (sCOD) removal efficiencies were 74.9% and 96.1%, respectively. 展开更多
关键词 anaerobic co-digestion biochemical methane potential continuous stirred-tank reactor (CSTR) fruit and vegetable waste food waste
原文传递
Inhibition mechanisms of ammonia and sulfate in high-solids anaerobic digesters for food waste treatment: Microbial community and element distributions responses
14
作者 Likui Feng Weixin Zhao +5 位作者 Yu Liu Yan Chen Shufei He Jing Ding Qingliang Zhao Liangliang Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期342-348,共7页
The horizontal flow anaerobic digester indicated that high ammonia (2923 mg/L) and SO42-(3653 mg/L)would influence the performance of methane production with food waste as substrates.Therefore,bottle anaerobic digesti... The horizontal flow anaerobic digester indicated that high ammonia (2923 mg/L) and SO42-(3653 mg/L)would influence the performance of methane production with food waste as substrates.Therefore,bottle anaerobic digestion reactors were carried out to investigate the effect of ammonia/sulfate concentrations on the methane production.Experimental results manifested that the anaerobic digesters with an ammonia concentration of 3500 mg/L or sulfate of 1600 mg/L showed the best performance of methane production,with an average methane yield of 0.32 and 0.33 L (g VS)^(-1)d^(-1),respectively.Specifically,a higher ammonia (6500 mg/L) or sulfate (1600-3500 mg/L) level hindered the bioconversion of C from liquid to gas phase (2.68%or 1.73%CH_(4)-Gas,respectively),while insignificantly for the hydrolyzation of C and N from solid to liquid phase.Similar to sulfate,high ammonia nitrogen seriously inhibited the methanation process,leading to a significant carbon accumulation in the anaerobic reactor,especially for propionic acid.The predominant archaea Methanosarcina at genus level indicated that aceticlastic methanogenesis was the major methanogenic pathway.Meanwhile,high ammonia level suppressed the activity of Methanosarcina,while modest sulfate improved H_(2)-consuming methanogens activity.A large fraction of unclassified bacteria within the Firmicutes (43.78%-63.17%) and Bacteroidetes (24.20%-33.30%) phylum played an important role in substrates hydrolysis. 展开更多
关键词 anaerobic digestion Ammonia/sulfate inhibition Element transformation food waste Microbial community
原文传递
Fate of antibiotics and antibiotic resistance genes in a full-scale restaurant food waste treatment plant:Implications of the roles beyond heavy metals and mobile genetic elements 被引量:9
15
作者 Pinjing He Zhuofeng Yu +2 位作者 Liming Shao Yizhou Zhou Fan Lü 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第11期17-34,共18页
Is our food safe and free of the crisis of antibiotics and antibiotic resistance (AR)?And will the derived food waste (FW) impose AR risk to the environment after biological treatment? This study used restaurant FW le... Is our food safe and free of the crisis of antibiotics and antibiotic resistance (AR)?And will the derived food waste (FW) impose AR risk to the environment after biological treatment? This study used restaurant FW leachates flowing through a 200 tons-waste/day biological treatment plant as a window to investigate the fate of antibiotics and antibiotic-resistance genes (ARGs) during the acceptance and treatment of FW.Sulfonamides (sulfamethazine,sulfamethoxazole) and quinolones (ciprofloxacin,enrofloxacin,ofloxacin) were detected during FW treatment,while tetracyclines,macrolides and chloramphenicols were not observable.ARGs encoding resistance to sulfonamides,tetracyclines and macrolides emerged in FW leachates.Material flow analysis illustrated that the total amount of antibiotics (except sulfamethazine) and ARGs were constant during FW treatment processes.Both the concentration and total amount of most antibiotics and ARGs fluctuated during treatment,physical processes (screening,centrifugation,solid-liquid and oil-water separation) did not decrease antibiotic or ARGs concentrations or total levels permanently;the affiliated wastewater treatment plant appeared to remove sulfonamides and most ARGs concentrations and total amount.Heavy metals Ni,Co and Cu were important for disseminating antibiotics concentrations and MGEs for distributing ARGs concentrations.Humic substances (fulvic acids,hydrophilic fractions),C-associated and N-associated contents were essential for the distribution of the total amounts of antibiotics and ARGs.Overall,this study implied that human food might not be free of antibiotics and ARGs,and FW was an underestimated AR pool with various determinants.Nonetheless,derived hazards of FW could be mitigated through biological treatment with well-planned daily operations. 展开更多
关键词 food waste Biological treatment anaerobic digestion ANTIBIOTICS Antibiotic resistance GENES Material flow analysis
原文传递
Enhanced nitrogen removal upon the addition of volatile fatty acids from activated sludge by combining calcium peroxide and low-thermal pretreatments 被引量:1
16
作者 Jiajun Sun Junxue Song +1 位作者 Wei Fang Hongbin Cao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第10期145-151,共7页
This study investigated a combined low-thermal and CaO_(2)pretreatment to enhance the volatile fatty acid(VFA)production from waste activated sludge(WAS).The fermentative product was added to a sequencing batch reacto... This study investigated a combined low-thermal and CaO_(2)pretreatment to enhance the volatile fatty acid(VFA)production from waste activated sludge(WAS).The fermentative product was added to a sequencing batch reactor(SBR)as an external carbon source to enhance nitrogen removal.The results showed that the combined pretreatment improved WAS solubilization,releasing more biodegradable substrates,such as proteins and polysaccharides,from TB-EPS to LB-EPS and S-EPS.The maximum VFA production of 3529±188 mg COD/L was obtained in the combined pretreatment(0.2 g CaO_(2)/g VS+70℃for 60 min),which was 2.1 and 1.4-fold of that obtained from the sole low-thermal pretreatment and the control test,respectively.Consequently,when the fermentative liquid was added as an external denitrification carbon source,the effluent total nitrogen decreased to Class A of the discharge standard for pollutants in rural wastewater treatment plants in most areas of China. 展开更多
关键词 waste activated sludge anaerobic digestion Calcium peroxide Low-thermal pretreatment Volatile fatty acids
原文传递
温度转换对厌氧消化系统连续运行及微生物群落的影响 被引量:2
17
作者 唐山青 谢彦培 +7 位作者 刘智峰 张媛媛 张贤胜 耿学海 王蜜儿 潘园 黄馨怡 汤琳 《中国环境科学》 EI CAS CSCD 北大核心 2024年第8期4303-4313,共11页
通过210d的连续厌氧消化试验,实现了以餐厨垃圾为发酵底物的同一厌氧消化系统内发酵温度从中温到高温的转换.试验结果显示,中温阶段,最高有机负荷(OLR)为6.5kg COD/(m^(3)·d),平均沼气产率658L/(kg COD·d);产甲烷优势菌属包括... 通过210d的连续厌氧消化试验,实现了以餐厨垃圾为发酵底物的同一厌氧消化系统内发酵温度从中温到高温的转换.试验结果显示,中温阶段,最高有机负荷(OLR)为6.5kg COD/(m^(3)·d),平均沼气产率658L/(kg COD·d);产甲烷优势菌属包括Methanosaeta(57.0%)、Methanospirillum(10.0%)、Methanomethylovorans(9.2%)和Methanobacterium(19.7%),其与水解酸化类细菌、同型产乙酸菌等形成互营关系,实现高效产甲烷过程.经35d升温过程后,中温发酵系统平稳转换为高温发酵系统.高温系统稳定运行时OLR为5.0kg COD/(m^(3)·d),平均沼气产率480L/(kg COD·d);产甲烷优势菌属主要为Methanoculleus(96.2%),其与互养产氢类细菌和互营乙酸氧化细菌等形成互营关系,共同推动H_(2)利用和产甲烷过程.但高温系统在试验后期呈现明显酸化趋势,产气效率大幅下降,推断是因为该阶段产甲烷菌活性受到抑制,而水解产酸菌大量富集,使得有机酸生成与利用过程失衡,最终导致系统崩溃.综上说明厌氧发酵系统在线温度转换具有技术可行性,但高温系统的运行性能和稳定性较中温系统偏低. 展开更多
关键词 餐厨垃圾 厌氧消化 发酵温度转换 运行性能 微生物群落
下载PDF
发酵罐内通入空气去除H_(2)S同步提升产甲烷效率研究
18
作者 姜彭午 乔玮 +3 位作者 段利娟 赵明曦 侯旭峰 董仁杰 《新能源进展》 CSCD 北大核心 2024年第3期285-293,共9页
餐厨垃圾高温厌氧消化沼气中含有高浓度的H_(2)S,在使用前需要将其去除。对连续运行了230d的高温厌氧消化反应器进行研究,考察了不同有机负荷、通入空气量和沼气顶空循环对H_(2)S去除效果的影响,并分析了向反应器顶空通入空气后厌氧消... 餐厨垃圾高温厌氧消化沼气中含有高浓度的H_(2)S,在使用前需要将其去除。对连续运行了230d的高温厌氧消化反应器进行研究,考察了不同有机负荷、通入空气量和沼气顶空循环对H_(2)S去除效果的影响,并分析了向反应器顶空通入空气后厌氧消化性能的提升效果。实验发现,在水力停留时间15d和沼气顶空停留时间2.8h的条件下,恒流量连续通入3倍理论空气量可去除78%的H_(2)S。进一步采用沼气顶空循环,H_(2)S体积分数从平均0.2%下降至0.01%以下,去除率达到95%。在通入空气的工况下,餐厨垃圾高温厌氧消化的甲烷产率提高了8.5%,达到310mL/g(以COD质量计);沼气容积产气率提高了10.5%,达到4.2L/(L∙d)。乙酸和丙酸的浓度与对照反应器相比没有显著变化,均维持在较低浓度水平。总体而言,在反应器内脱除H_(2)S的工艺方法操作简便,成本低廉,具有广阔的工程应用前景。 展开更多
关键词 餐厨垃圾 高温厌氧消化 沼气脱硫 通入空气
下载PDF
餐厨垃圾水力制浆耦合厌氧消化的效果分析 被引量:1
19
作者 朱浩 刘晓吉 +5 位作者 仲跻胜 吴义祥 刘钊 张莹莹 孙岩松 王勇群 《环境工程技术学报》 CAS CSCD 北大核心 2024年第1期216-223,共8页
根据餐厨垃圾高含水的特点,从水力模拟、浆化物料特性、设备运行关键指标及项目运行效果等方面对餐厨垃圾水力浆化预处理技术进行综合评价。计算流体力学(CFD)的水力模拟结果表明,浆化过程中流体质点螺旋式汇聚至转叶,形成三股内旋状涡... 根据餐厨垃圾高含水的特点,从水力模拟、浆化物料特性、设备运行关键指标及项目运行效果等方面对餐厨垃圾水力浆化预处理技术进行综合评价。计算流体力学(CFD)的水力模拟结果表明,浆化过程中流体质点螺旋式汇聚至转叶,形成三股内旋状涡流,在流体内部产生明显的流速差和正负压分区现象,水力作用下可快速实现餐厨垃圾的浆化。浆料和杂质特征分析表明,浆化产物颗粒细小,有机质损失率低,杂质去除率高,可与后端不同资源化技术(如厌氧消化、好氧堆肥等)高度融合。以水力浆化与厌氧消化技术相结合的餐厨垃圾资源化项目为例,餐厨垃圾经水力浆化预处理后,有机质损失率约为8.5%;不可生物降解杂质分选率约94%;粗油脂提取率约91%,吨餐厨垃圾平均产油率为3.76%,产气率为85.57 m^(3)(以标态计)。该处理方式较机械式预处理具有更高的资源化利用率,可大幅提升项目的经济效益。 展开更多
关键词 餐厨垃圾 水力制浆 预处理 资源化 厌氧消化
下载PDF
沼渣水热炭与沼渣热解炭强化餐厨垃圾厌氧消化对比研究
20
作者 欧阳创 张余镕 +3 位作者 邰俊 徐先宝 薛罡 李响 《环境卫生工程》 2024年第3期47-53,共7页
餐厨垃圾厌氧消化产生大量沼渣,亟需得到妥善处理。采用水热与热解将沼渣分别制备为水热炭与热解炭,并对比研究了其对餐厨垃圾厌氧消化的影响。结果表明:与对照组(23.8 mL/g)相比,水热炭组(投加量1、5、10 g/L)甲烷产量分别为24.0、38.9... 餐厨垃圾厌氧消化产生大量沼渣,亟需得到妥善处理。采用水热与热解将沼渣分别制备为水热炭与热解炭,并对比研究了其对餐厨垃圾厌氧消化的影响。结果表明:与对照组(23.8 mL/g)相比,水热炭组(投加量1、5、10 g/L)甲烷产量分别为24.0、38.9、34.9 mL/g,分别提高了0.8%、63.4%、46.6%;热解炭组(投加量1、5、10 g/L)甲烷产量分别为29.7、35.7、31.1 mL/g,分别提高了24.8%、50.0%、30.7%。投加水热炭和热解炭促进了有机物溶出,且水解产酸菌包括Fastidiosipila、 W5053、 Propioniciclava、 Actinomyces (放线菌属)、Norank_f__ST-12K33的总相对丰度由73.0%分别提升至84.6%和82.0%。投加水热炭和热解炭后,Methanosaeta(鬃毛甲烷菌属)相对丰度分别高达60.3%和50.6%,Methanobacterium (甲烷杆菌属)相对丰度仅为26.5%和36.9%。沼渣生物炭可以强化餐厨垃圾厌氧消化,随着投加量的增加,甲烷产量先上升后下降,最优投加量为5 g/L,且水热炭效果优于热解炭。 展开更多
关键词 沼渣 水热炭 热解炭 餐厨垃圾 厌氧消化
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部