The detailed genetic analysis of mycoplasmas has long been hampered by the lack of appropriate tools for genetic manipulation. In this study, the transposon vector, mini-Tn4001tetM, was constructed containing the tnp ...The detailed genetic analysis of mycoplasmas has long been hampered by the lack of appropriate tools for genetic manipulation. In this study, the transposon vector, mini-Tn4001tetM, was constructed containing the tnp gene, encoding a transposase gene in Staphylococcus aureus, two copies of the IS256 inverted repeat sequence (inner and outer) and the tetM gene, from the Enterococcus faecalis Tn916 transposon, conferring resistance to tetracycline. This vector was electro-transformed into Mycoplasma gallisepticum (MG). The recombinant cells were screened by tetracycline selection. The results indicated that the transposon vector could replicate in MG strain R by successive passages, indicating that MG is a potential vector for expressing protective antigens of other pathogens.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.30871883 and 31001077)the National Basic Foundation of China (Grant Nos.2006JB01 and 2008JB13)the Shanghai Agri & Tech Foundation (Grant No.2007-11-2)
文摘The detailed genetic analysis of mycoplasmas has long been hampered by the lack of appropriate tools for genetic manipulation. In this study, the transposon vector, mini-Tn4001tetM, was constructed containing the tnp gene, encoding a transposase gene in Staphylococcus aureus, two copies of the IS256 inverted repeat sequence (inner and outer) and the tetM gene, from the Enterococcus faecalis Tn916 transposon, conferring resistance to tetracycline. This vector was electro-transformed into Mycoplasma gallisepticum (MG). The recombinant cells were screened by tetracycline selection. The results indicated that the transposon vector could replicate in MG strain R by successive passages, indicating that MG is a potential vector for expressing protective antigens of other pathogens.