It is essential to investigate the light field camera parameters for the accurate flame temperature measurement because the sampling characteristics of the flame radiation can be varied with them. In this study, novel...It is essential to investigate the light field camera parameters for the accurate flame temperature measurement because the sampling characteristics of the flame radiation can be varied with them. In this study, novel indices of the light field camera were proposed to investigate the directional and spatial sampling characteristics of the flame radiation. Effects of light field camera parameters such as focal length and magnification of the main lens, focal length and magnification of the microlens were investigated. It was observed that the sampling characteristics of the flame are varied with the different parameters of the light field camera. The optimized parameters of the light field camera were then proposed for the flame radiation sampling. The larger sampling angle(23 times larger) is achieved by the optimized parameters compared to the commercial light field camera parameters. A non-negative least square(NNLS) algorithm was used to reconstruct the flame temperature. The reconstruction accuracy was also evaluated by the optimized parameters. The results suggested that the optimized parameters can provide higher reconstruction accuracy for axisymmetric and non-symmetric flame conditions in comparison to the commercial light field camera.展开更多
Field nutrient distribution maps obtained from the study on soil variations within fields are the basis of precision agriculture. The quality of these maps for management depends on the accuracy of the predicted value...Field nutrient distribution maps obtained from the study on soil variations within fields are the basis of precision agriculture. The quality of these maps for management depends on the accuracy of the predicted values, which depends on the initial sampling. To produce reliable predictions efficiently the minimal sampling size and combination should be decided firstly, which could avoid the misspent funds for field sampling work. A 7.9 hectare silage field close to the Agricultural Research institute at Hillsborough, Northern Ireland, was selected for the study. Soil samples were collected from the field at 25 m intervals in a rectangular grid to provide a database of selected soil properties. Different data combinations were subsequently abstracted from this database for comparison purposes, and ordinary kriging used to produce interpolated soil maps. These predicted data groups were compared using least significant difference (LSD) test method. The results showed that the 62 sampling sizes of triangle arrangement for soil available K were sufficient to reach the required accuracy. The triangular sample combination proved to be superior to a rectangular one of similar sample size.展开更多
The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelastic...The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.展开更多
The distributed passive measurement is an important technology for networkbehavior research. To achieve a consistent measurement, the same packets should be sampled atdistributed measurement points. And in order to es...The distributed passive measurement is an important technology for networkbehavior research. To achieve a consistent measurement, the same packets should be sampled atdistributed measurement points. And in order to estimate the character of traffic statistics, thetraffic sample should be random in statistics. A distributed samplingmask measurement model isintroduced to tackle the difficulty of measuring the full trace of high-speed networks. The keypoint of the model is to choose some bits that are suitable to be sampling mask. In the paper, thebit entropy and bit flow entropy of IP packet headers in CERNET backbone are analyzed, and we findthat the 16 bits of identification field in IP packet header are fit to the matching field ofsampling mask. Measurement traffic also can be used to analyze the statistical character ofmeasurement sample and the randomicity of the model. At the same time the experiment resultsindicate that the model has a good sampling performance.展开更多
China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a...China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.展开更多
Based on the experience of soil sampling in Yuanzegou small watershed,several matters needing attention in soil field sampling are summarized.This paper focuses on the layout of sampling points,soil sample collection,...Based on the experience of soil sampling in Yuanzegou small watershed,several matters needing attention in soil field sampling are summarized.This paper focuses on the layout of sampling points,soil sample collection,soil sample preparation and matters needing attention about potential factors in soil field sampling,with a view to providing reference for undergraduates,master students or non-subject experimenters who are about to carry out experiments in this discipline.展开更多
We have studied the influence of probe-sample interaction in a scanning near-field optical microscopy (SNOM) in the far field by using samples with a step structure. For a sample with a step height of - λ/4, the SN...We have studied the influence of probe-sample interaction in a scanning near-field optical microscopy (SNOM) in the far field by using samples with a step structure. For a sample with a step height of - λ/4, the SNOM image contrast between the two sides of the step changes periodically at different scan heights. For a step height of-λ/2, the image contrast remains approximately the same. The probe-sample interaction determines the SNOM image contrast here. The influence of different refractive indices of the sample has been also analysed by using a simple theoretical model.展开更多
Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty ...Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51676044 and 51327803)the Social Development Project of Jiangsu Province,China(Grant No.BE20187053)+1 种基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX170081)China Scholarship Council
文摘It is essential to investigate the light field camera parameters for the accurate flame temperature measurement because the sampling characteristics of the flame radiation can be varied with them. In this study, novel indices of the light field camera were proposed to investigate the directional and spatial sampling characteristics of the flame radiation. Effects of light field camera parameters such as focal length and magnification of the main lens, focal length and magnification of the microlens were investigated. It was observed that the sampling characteristics of the flame are varied with the different parameters of the light field camera. The optimized parameters of the light field camera were then proposed for the flame radiation sampling. The larger sampling angle(23 times larger) is achieved by the optimized parameters compared to the commercial light field camera parameters. A non-negative least square(NNLS) algorithm was used to reconstruct the flame temperature. The reconstruction accuracy was also evaluated by the optimized parameters. The results suggested that the optimized parameters can provide higher reconstruction accuracy for axisymmetric and non-symmetric flame conditions in comparison to the commercial light field camera.
基金Project supported by the British Council !(No. SHA/ 992/ 297) the Natural Science Foundation of Zhejiang Province, China! (N
文摘Field nutrient distribution maps obtained from the study on soil variations within fields are the basis of precision agriculture. The quality of these maps for management depends on the accuracy of the predicted values, which depends on the initial sampling. To produce reliable predictions efficiently the minimal sampling size and combination should be decided firstly, which could avoid the misspent funds for field sampling work. A 7.9 hectare silage field close to the Agricultural Research institute at Hillsborough, Northern Ireland, was selected for the study. Soil samples were collected from the field at 25 m intervals in a rectangular grid to provide a database of selected soil properties. Different data combinations were subsequently abstracted from this database for comparison purposes, and ordinary kriging used to produce interpolated soil maps. These predicted data groups were compared using least significant difference (LSD) test method. The results showed that the 62 sampling sizes of triangle arrangement for soil available K were sufficient to reach the required accuracy. The triangular sample combination proved to be superior to a rectangular one of similar sample size.
基金financial support from the National Natural Science Foundation of China(Nos.52004137,52121003,51727807,12032013 and 11972209)Fundamental Research Funds for the Central Universities(No.2022XJAQ01)。
文摘The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.
文摘The distributed passive measurement is an important technology for networkbehavior research. To achieve a consistent measurement, the same packets should be sampled atdistributed measurement points. And in order to estimate the character of traffic statistics, thetraffic sample should be random in statistics. A distributed samplingmask measurement model isintroduced to tackle the difficulty of measuring the full trace of high-speed networks. The keypoint of the model is to choose some bits that are suitable to be sampling mask. In the paper, thebit entropy and bit flow entropy of IP packet headers in CERNET backbone are analyzed, and we findthat the 16 bits of identification field in IP packet header are fit to the matching field ofsampling mask. Measurement traffic also can be used to analyze the statistical character ofmeasurement sample and the randomicity of the model. At the same time the experiment resultsindicate that the model has a good sampling performance.
文摘China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.
文摘Based on the experience of soil sampling in Yuanzegou small watershed,several matters needing attention in soil field sampling are summarized.This paper focuses on the layout of sampling points,soil sample collection,soil sample preparation and matters needing attention about potential factors in soil field sampling,with a view to providing reference for undergraduates,master students or non-subject experimenters who are about to carry out experiments in this discipline.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90206003, 10374005, 10434020, 10521002, 10328407 and 90101027) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040001012).
文摘We have studied the influence of probe-sample interaction in a scanning near-field optical microscopy (SNOM) in the far field by using samples with a step structure. For a sample with a step height of - λ/4, the SNOM image contrast between the two sides of the step changes periodically at different scan heights. For a step height of-λ/2, the image contrast remains approximately the same. The probe-sample interaction determines the SNOM image contrast here. The influence of different refractive indices of the sample has been also analysed by using a simple theoretical model.
基金funding support from the China Scholarship Council(CSC).
文摘Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.