This paper reports the design, construction, and operation of NWPU20 Micro Air Vehicle (MAV), which is the smallest that has, up to now, been developed in PR China. The miniaturization level in PR China makes smaller ...This paper reports the design, construction, and operation of NWPU20 Micro Air Vehicle (MAV), which is the smallest that has, up to now, been developed in PR China. The miniaturization level in PR China makes smaller MAV, in our opinion, not possible to implement. The NWPU20 is a 20-centimeter span, battery powered, fixed-wing aircraft with an off-the-shelf color video camera that can transmit live video back to the ground station. The on-board electronic subsystems are smallest and lightest among the commercial products, including an 8-gram wireless video camera, an 8-gram receiver, a 5-gram electronic speed controller (ESC), two 4.5-gram fully proportional radio frequency control servos, and the total mass of NWPU20 is less than 80 grams. An experimental model was fabricated and tested in the Low Turbulent Flow Wind Tunnel (LTFWT) at Northwestern Polytechnical University (NWPU) to research low Reynolds number flow characteristics of the NWPU20. The result of the wind tunnel test shows that stall angle of attack of NWPU20 can reach 30°, which is higher than that of the general aircrafts, and the maximum lift-to-drag ratio of NWPU20 can nearly reach 6 at the angle of attack of 10°, which can satisfy design requirements of the NWPU20. A small-sized propulsion/torque testing system was developed to measure and analyze the propulsion and torque performances of the motor-propeller combination used in the NWPU20. A center of gravity (c.g.) testing apparatus was developed and used to adjust the c.g. of the NWPU20 so that it has good longitudinal static stability and control. The NWPU20 prototype has undergone successfully flight tests many times; it flies at 32 kilometers per hour, with an endurance of 15 minutes, and a maximum communications range of 300 meters. With the color video camera, NWPU20 successfully transmits real-time video back to the ground station. The success of NWPU20 proves preliminarily that 20-centimeter span micro air vehicle is feasible and usable.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
为了提高微型飞行器(MAV)无线视频传输的质量、扩大传输距离,设计并实现了一种基于3G WCDMA无线网络的机载视频传输系统。采用TI公司的达芬奇处理器TMS320DM355作为核心处理器,给出了总体设计方案和硬件结构,并阐述了采用PPP协议拨号接...为了提高微型飞行器(MAV)无线视频传输的质量、扩大传输距离,设计并实现了一种基于3G WCDMA无线网络的机载视频传输系统。采用TI公司的达芬奇处理器TMS320DM355作为核心处理器,给出了总体设计方案和硬件结构,并阐述了采用PPP协议拨号接入WCDMA网络的方法。采用嵌入式Linux操作系统作为软件开发平台,分析并设计了基于V4L2(Video For Linux Two)驱动的视频采集模块。通过调用TI提供的编解码引擎API,实现了视频MPEG-4压缩编码处理。针对视频传输的实时性要求,采用了实时传输协议RTP和实时传输控制协议RTCP,重点阐述了MPEG-4视频的RTP封包策略,并基于JRTPLIB库文件实现了视频的实时传输功能。实验结果表明,该系统可以满足视频清晰、实时的传输要求。展开更多
In this study, we present a complete structural analysis ofAllomyrina dichotoma beetle's hind wings by investigating their static and dynamic characteristics. The wing was subjected to the static loading to determine...In this study, we present a complete structural analysis ofAllomyrina dichotoma beetle's hind wings by investigating their static and dynamic characteristics. The wing was subjected to the static loading to determine its overall flexural stiffness. Dy- namic characteristics such as natural frequency, mode shape, and damping ratio of vibration modes in the operating frequency range were determined using a Bruel & Kjaer fast Fourier transform analyzer along with a laser sensor. The static and dynamic characteristics of natural Allomyrina dichotoma beetle's hind wings were compared to those of a fabricated artificial wing. The results indicate that natural frequencies of the natural wing were significantly correlated to the wing surface area density that was defined as the wing mass divided by the hind wing surface area. Moreover, the bending behaviors of the natural wing and artificial wing were similar to that of a cantilever beam. Furthermore, the flexural stiffness of the artificial wing was a little higher than that of the natural one whereas the natural frequency of the natural wing was close to that of the artificial wing. These results provide important information for the biomimetic design of insect-scale artificial wings, with which highly ma- neuverable and efficient micro air vehicles can be designed.展开更多
We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments...We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments. The generator tilts the stroke plane of each wing independently to direct the resultant aerodynamic force in the desired direction to ultimately generate pitch and yaw moments. A roll moment is produced by an additional mechanism that shifts the trailing edge, which changes the wing rotation angles of the two flapping wings and produces an asymmetric thrust. Images of the flapping wings are captured with a high-speed camera and clearly show that the FW-MAV can independently change the stroke planes of its two wings. The measured force and moment data prove that the control moment generator produces reasonable pitch and yaw moments by tilting the stroke plane and realizes a roll moment by shifting the position of the trailing edge at the wing root.展开更多
文摘This paper reports the design, construction, and operation of NWPU20 Micro Air Vehicle (MAV), which is the smallest that has, up to now, been developed in PR China. The miniaturization level in PR China makes smaller MAV, in our opinion, not possible to implement. The NWPU20 is a 20-centimeter span, battery powered, fixed-wing aircraft with an off-the-shelf color video camera that can transmit live video back to the ground station. The on-board electronic subsystems are smallest and lightest among the commercial products, including an 8-gram wireless video camera, an 8-gram receiver, a 5-gram electronic speed controller (ESC), two 4.5-gram fully proportional radio frequency control servos, and the total mass of NWPU20 is less than 80 grams. An experimental model was fabricated and tested in the Low Turbulent Flow Wind Tunnel (LTFWT) at Northwestern Polytechnical University (NWPU) to research low Reynolds number flow characteristics of the NWPU20. The result of the wind tunnel test shows that stall angle of attack of NWPU20 can reach 30°, which is higher than that of the general aircrafts, and the maximum lift-to-drag ratio of NWPU20 can nearly reach 6 at the angle of attack of 10°, which can satisfy design requirements of the NWPU20. A small-sized propulsion/torque testing system was developed to measure and analyze the propulsion and torque performances of the motor-propeller combination used in the NWPU20. A center of gravity (c.g.) testing apparatus was developed and used to adjust the c.g. of the NWPU20 so that it has good longitudinal static stability and control. The NWPU20 prototype has undergone successfully flight tests many times; it flies at 32 kilometers per hour, with an endurance of 15 minutes, and a maximum communications range of 300 meters. With the color video camera, NWPU20 successfully transmits real-time video back to the ground station. The success of NWPU20 proves preliminarily that 20-centimeter span micro air vehicle is feasible and usable.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘为了提高微型飞行器(MAV)无线视频传输的质量、扩大传输距离,设计并实现了一种基于3G WCDMA无线网络的机载视频传输系统。采用TI公司的达芬奇处理器TMS320DM355作为核心处理器,给出了总体设计方案和硬件结构,并阐述了采用PPP协议拨号接入WCDMA网络的方法。采用嵌入式Linux操作系统作为软件开发平台,分析并设计了基于V4L2(Video For Linux Two)驱动的视频采集模块。通过调用TI提供的编解码引擎API,实现了视频MPEG-4压缩编码处理。针对视频传输的实时性要求,采用了实时传输协议RTP和实时传输控制协议RTCP,重点阐述了MPEG-4视频的RTP封包策略,并基于JRTPLIB库文件实现了视频的实时传输功能。实验结果表明,该系统可以满足视频清晰、实时的传输要求。
文摘In this study, we present a complete structural analysis ofAllomyrina dichotoma beetle's hind wings by investigating their static and dynamic characteristics. The wing was subjected to the static loading to determine its overall flexural stiffness. Dy- namic characteristics such as natural frequency, mode shape, and damping ratio of vibration modes in the operating frequency range were determined using a Bruel & Kjaer fast Fourier transform analyzer along with a laser sensor. The static and dynamic characteristics of natural Allomyrina dichotoma beetle's hind wings were compared to those of a fabricated artificial wing. The results indicate that natural frequencies of the natural wing were significantly correlated to the wing surface area density that was defined as the wing mass divided by the hind wing surface area. Moreover, the bending behaviors of the natural wing and artificial wing were similar to that of a cantilever beam. Furthermore, the flexural stiffness of the artificial wing was a little higher than that of the natural one whereas the natural frequency of the natural wing was close to that of the artificial wing. These results provide important information for the biomimetic design of insect-scale artificial wings, with which highly ma- neuverable and efficient micro air vehicles can be designed.
文摘We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments. The generator tilts the stroke plane of each wing independently to direct the resultant aerodynamic force in the desired direction to ultimately generate pitch and yaw moments. A roll moment is produced by an additional mechanism that shifts the trailing edge, which changes the wing rotation angles of the two flapping wings and produces an asymmetric thrust. Images of the flapping wings are captured with a high-speed camera and clearly show that the FW-MAV can independently change the stroke planes of its two wings. The measured force and moment data prove that the control moment generator produces reasonable pitch and yaw moments by tilting the stroke plane and realizes a roll moment by shifting the position of the trailing edge at the wing root.