In this paper, we study minimal and maximal fixed point theorems and iterative technique for nonlinear operators in product spaces. As a corollary of our result, some coupled fixed point theorems are obtained, which g...In this paper, we study minimal and maximal fixed point theorems and iterative technique for nonlinear operators in product spaces. As a corollary of our result, some coupled fixed point theorems are obtained, which generalize the coupled fixed point theorems obtained by Guo Da-jun and Lankshmikantham[21 and the results obtained by Lan in [4], and [6].展开更多
In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered B...In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.展开更多
This study establishes a common coupled fixed point for two pairs of compatible and sequentially continuous mappings in the intuitionistic fuzzy metric space that satisfy theφ-contractive conditions.Many basic defini...This study establishes a common coupled fixed point for two pairs of compatible and sequentially continuous mappings in the intuitionistic fuzzy metric space that satisfy theφ-contractive conditions.Many basic definitions and theorems have been used from some recent scientific papers about the binary operator,t-norm,t-conorm,intuitionistic fuzzy metric space,and compatible mapping for reaching to the paper’s purpose.展开更多
In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative...In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative formula are given.展开更多
The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly mono...The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).展开更多
A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions ar...A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions are sought in the set of the fixed points of another non-expansive mapping. As applications, we use the results to study problems of the monotone variational inequality, the convex programming, the hierarchical minimization, and the quadratic minimization over fixed point sets.展开更多
The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating ...The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.展开更多
In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the...In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.展开更多
In this paper, we present a new fixed point theorem in L-convex spaces and apply it to obtain a maximal element theorem, a variational inequality and a saddle point theorem in L-convex spaces.
In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly sm...In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Some strong convergence theorems are obtained, to extend the previous work.展开更多
A new family of GB-majorized mappings from a topological space into a finite continuous topological spaces (in short, FC-space) involving a better admissible set-valued mapping is introduced. Some existence theorems...A new family of GB-majorized mappings from a topological space into a finite continuous topological spaces (in short, FC-space) involving a better admissible set-valued mapping is introduced. Some existence theorems of maximal elements for the family of GB-majorized mappings are proved under noncompact setting of product FCspaces. Some applications to fixed point and system of minimax inequalities are given in product FC-spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real...In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real uniformly smooth and uniformly convex Banach space are proposed. Some weak convergence theorems are obtained, which extend and complement some previous work.展开更多
In this paper, we research the existence and uniqueness of positive solutions for a coupled system of fractional differential equations. By means of some standard fixed point principles, some results on the existence ...In this paper, we research the existence and uniqueness of positive solutions for a coupled system of fractional differential equations. By means of some standard fixed point principles, some results on the existence and uniqueness of positive solutions for coupled systems are obtained.展开更多
In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan...In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan minimax inequality and an existence theorem for saddle points are obtained.展开更多
In this paper,a new GLKKM type theorem is established for noncompact complete L-convex metric spaces.As applications,the properties of the solution set of variational in-equalities,intersection point sets,Ky Fan secti...In this paper,a new GLKKM type theorem is established for noncompact complete L-convex metric spaces.As applications,the properties of the solution set of variational in-equalities,intersection point sets,Ky Fan sections and maximal element sets are shown,and a Fan-Browder fixed point theorem is obtained.展开更多
In this paper,a new fixed point theorem is established in noncompact complete Lconvex metric spaces.As applications,a maximal element theorem,a minimax inequality and a saddle point theorem are obtained.
Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identific...Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identification and machine learning. In this paper, the non-Lipschitz ?_p(0 < p < 1) regularized matrix minimization problem is studied. A global necessary optimality condition for this non-Lipschitz optimization problem is firstly obtained, specifically, the global optimal solutions for the problem are fixed points of the so-called p-thresholding operator which is matrix-valued and set-valued. Then a fixed point iterative scheme for the non-Lipschitz model is proposed, and the convergence analysis is also addressed in detail. Moreover,some acceleration techniques are adopted to improve the performance of this algorithm. The effectiveness of the proposed p-thresholding fixed point continuation(p-FPC) algorithm is demonstrated by numerical experiments on randomly generated and real matrix completion problems.展开更多
Matsushita, Takahashi[4] proved a strong convergence theorem for relatively nonex- pansive mappings in a Banach space by using the hybrid method (CQ method) in mathematical programming. The purpose of this paper is to...Matsushita, Takahashi[4] proved a strong convergence theorem for relatively nonex- pansive mappings in a Banach space by using the hybrid method (CQ method) in mathematical programming. The purpose of this paper is to modify the hybrid method of Matsushita, Taka- hashi by monotone CQ method, and to prove strong convergence theorems for weak relatively nonexpansive mappings and maximal monotone operators in Banach spaces. The convergence rate of monotone CQ method is faster than the hybrid method of Matsushi...展开更多
文摘In this paper, we study minimal and maximal fixed point theorems and iterative technique for nonlinear operators in product spaces. As a corollary of our result, some coupled fixed point theorems are obtained, which generalize the coupled fixed point theorems obtained by Guo Da-jun and Lankshmikantham[21 and the results obtained by Lan in [4], and [6].
基金Funded by the Natural Science Foundation of China (No. 10171070)
文摘In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.
文摘This study establishes a common coupled fixed point for two pairs of compatible and sequentially continuous mappings in the intuitionistic fuzzy metric space that satisfy theφ-contractive conditions.Many basic definitions and theorems have been used from some recent scientific papers about the binary operator,t-norm,t-conorm,intuitionistic fuzzy metric space,and compatible mapping for reaching to the paper’s purpose.
文摘In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative formula are given.
基金the Natural Science Foundation of Yibin University of China(No.2007-Z003)
文摘The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).
基金supported by the Natural Science Foundation of Yibin University (No.2009Z3)
文摘A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions are sought in the set of the fixed points of another non-expansive mapping. As applications, we use the results to study problems of the monotone variational inequality, the convex programming, the hierarchical minimization, and the quadratic minimization over fixed point sets.
基金supported by the Natural Science Foundation of Yibin University (No.2009-Z003)
文摘The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.
文摘In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.
基金Foundation item: Supported by the Natural Science Foundation of Guizhou Province(J2011]2093)
文摘In this paper, we present a new fixed point theorem in L-convex spaces and apply it to obtain a maximal element theorem, a variational inequality and a saddle point theorem in L-convex spaces.
基金the National Natural Science Foundation of China (10771050)
文摘In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Some strong convergence theorems are obtained, to extend the previous work.
基金Project supported by the Natural Science Foundation of Sichuan Education Department of China (Nos.2003A081 and SZD0406)
文摘A new family of GB-majorized mappings from a topological space into a finite continuous topological spaces (in short, FC-space) involving a better admissible set-valued mapping is introduced. Some existence theorems of maximal elements for the family of GB-majorized mappings are proved under noncompact setting of product FCspaces. Some applications to fixed point and system of minimax inequalities are given in product FC-spaces. These theorems improve, unify and generalize many important results in recent literature.
基金Supported by the National Natural Science Foundation of China(10771050)the Natural Science Foun-dation of Hebei Province(A2010001482)
文摘In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real uniformly smooth and uniformly convex Banach space are proposed. Some weak convergence theorems are obtained, which extend and complement some previous work.
文摘In this paper, we research the existence and uniqueness of positive solutions for a coupled system of fractional differential equations. By means of some standard fixed point principles, some results on the existence and uniqueness of positive solutions for coupled systems are obtained.
基金the Science Research Foundation of Bijie University(No.20062002)
文摘In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan minimax inequality and an existence theorem for saddle points are obtained.
基金Foundation item: the Natural Science Research Foundation of Guizhou Provincial Education Department (No. 2008072) the Natural Science Foundation of Science and Technologe Bureau of Bijie Area (No. 2008-06).
文摘In this paper,a new GLKKM type theorem is established for noncompact complete L-convex metric spaces.As applications,the properties of the solution set of variational in-equalities,intersection point sets,Ky Fan sections and maximal element sets are shown,and a Fan-Browder fixed point theorem is obtained.
基金Supported by the Natural Science Research Foundation of Guizhou Provincial Education Department (Grant No. 2008072)the Natural Science Foundation of Science and Technology Bureau of Bijie Area (Grant No. 2008- 06)
文摘In this paper,a new fixed point theorem is established in noncompact complete Lconvex metric spaces.As applications,a maximal element theorem,a minimax inequality and a saddle point theorem are obtained.
基金supported by National Natural Science Foundation of China(Grant Nos.11401124 and 71271021)the Scientific Research Projects for the Introduced Talents of Guizhou University(Grant No.201343)the Key Program of National Natural Science Foundation of China(Grant No.11431002)
文摘Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identification and machine learning. In this paper, the non-Lipschitz ?_p(0 < p < 1) regularized matrix minimization problem is studied. A global necessary optimality condition for this non-Lipschitz optimization problem is firstly obtained, specifically, the global optimal solutions for the problem are fixed points of the so-called p-thresholding operator which is matrix-valued and set-valued. Then a fixed point iterative scheme for the non-Lipschitz model is proposed, and the convergence analysis is also addressed in detail. Moreover,some acceleration techniques are adopted to improve the performance of this algorithm. The effectiveness of the proposed p-thresholding fixed point continuation(p-FPC) algorithm is demonstrated by numerical experiments on randomly generated and real matrix completion problems.
基金the National Natural Science Foundation of China (No.10771050)
文摘Matsushita, Takahashi[4] proved a strong convergence theorem for relatively nonex- pansive mappings in a Banach space by using the hybrid method (CQ method) in mathematical programming. The purpose of this paper is to modify the hybrid method of Matsushita, Taka- hashi by monotone CQ method, and to prove strong convergence theorems for weak relatively nonexpansive mappings and maximal monotone operators in Banach spaces. The convergence rate of monotone CQ method is faster than the hybrid method of Matsushi...