In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduc...In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.展开更多
In this paper, we propose and analyze an accelerated augmented Lagrangian method(denoted by AALM) for solving the linearly constrained convex programming. We show that the convergence rate of AALM is O(1/k^2) whil...In this paper, we propose and analyze an accelerated augmented Lagrangian method(denoted by AALM) for solving the linearly constrained convex programming. We show that the convergence rate of AALM is O(1/k^2) while the convergence rate of the classical augmented Lagrangian method(ALM) is O1 k. Numerical experiments on the linearly constrained 1-2minimization problem are presented to demonstrate the effectiveness of AALM.展开更多
In this paper, we propose double inertial forward-backward algorithms for solving unconstrained minimization problems and projected double inertial forward-backward algorithms for solving constrained minimization prob...In this paper, we propose double inertial forward-backward algorithms for solving unconstrained minimization problems and projected double inertial forward-backward algorithms for solving constrained minimization problems. We then prove convergence theorems under mild conditions. Finally, we provide numerical experiments on image restoration problem and image inpainting problem. The numerical results show that the proposed algorithms have more efficient than known algorithms introduced in the literature.展开更多
In this paper, the so—called partitioned Broyden’s algorithms used for solving Partially seperable optimization with a convex decomposition is concerned. Global convergence is proved for this type of "partition...In this paper, the so—called partitioned Broyden’s algorithms used for solving Partially seperable optimization with a convex decomposition is concerned. Global convergence is proved for this type of "partitioned updating" quasi-Newton method. The algorithm is well adapted to unconstrained problems involving many variables.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
文摘In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.
基金Supported by Fujian Natural Science Foundation(2016J01005)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB18010202)
文摘In this paper, we propose and analyze an accelerated augmented Lagrangian method(denoted by AALM) for solving the linearly constrained convex programming. We show that the convergence rate of AALM is O(1/k^2) while the convergence rate of the classical augmented Lagrangian method(ALM) is O1 k. Numerical experiments on the linearly constrained 1-2minimization problem are presented to demonstrate the effectiveness of AALM.
基金supported by National Research Council of Thailand (NRCT) under grant no. N41A640094the Thailand Science Research and Innovation Fund and the University of Phayao under the project FF66-UoE。
文摘In this paper, we propose double inertial forward-backward algorithms for solving unconstrained minimization problems and projected double inertial forward-backward algorithms for solving constrained minimization problems. We then prove convergence theorems under mild conditions. Finally, we provide numerical experiments on image restoration problem and image inpainting problem. The numerical results show that the proposed algorithms have more efficient than known algorithms introduced in the literature.
基金This research is supported by national nature science foundalion
文摘In this paper, the so—called partitioned Broyden’s algorithms used for solving Partially seperable optimization with a convex decomposition is concerned. Global convergence is proved for this type of "partitioned updating" quasi-Newton method. The algorithm is well adapted to unconstrained problems involving many variables.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金This research was partially supported by the National Science Foundation of China (No.10571116)Scientific Research Fund of Chongqing Municipal (No.060812)