This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears...This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears as commonplace in many realistic scenarios.Regarding this,we consider graphs composed of rings,with some possible connected paths between them.Without prior knowledge of the exact node permutations on rings,the existence of each edge can be unraveled through edge testing at a unit cost in one step.The problem examined is that of determining whether the given nodes are connected by a path or separated by a cut,with the minimum expected costs involved.Dividing the problem into different cases based on different topologies of the ring-based networks,we propose the corresponding policies that aim to quickly seek the paths between nodes.A common feature shared by all those policies is that we stick to going in the same direction during edge searching,with edge testing in each step only involving the test between the source and the node that has been tested most.The simple searching rule,interestingly,can be interpreted as a delightful property stemming from the neat structure of ring-based networks,which makes the searching process not rely on any sophisticated behaviors.We prove the optimality of the proposed policies by calculating the expected cost incurred and making a comparison with the other class of strategies.The effectiveness of the proposed policies is also verified through extensive simulations,from which we even disclose three extra intriguing findings:i)in a onering network,the cost will grow drastically with the number of designated nodes when the number is small and will grow slightly when that number is large;ii)in ring-based network,Depth First is optimal in detecting the connectivity between designated nodes;iii)the problem of multi-ring networks shares large similarity with that of two-ring networks,and a larger number of ties between rings will not influence the expected cost.展开更多
To gain a competitive edge within the international and compet让ive setting of coal markets, coal producers must find new ways of reducing costs. Increasing bench drilling efficiency and performance in open-cast coal ...To gain a competitive edge within the international and compet让ive setting of coal markets, coal producers must find new ways of reducing costs. Increasing bench drilling efficiency and performance in open-cast coal mines has the potential to generate savings. Specifically, monitoring, analyzing, and optimizing the drilling operation can reduce drilling costs. For example, determining the optimal drill bit replacement time will help to achieve the desirable penetration rate. This paper presents a life data analysis of drill bits to fit a statistical distribution using failure records. These results are then used to formulate a cost minimization problem to estimate the drill bit replacement time using the evolutionary algorithm. The effect of cost on the uncertainty associated with replacement time is assessed through Monte-Carlo simulation. The relationship between the total expected replacement cost and replacement time is also presented. A case study shows that the proposed approach can be used to assist with designing a drill bit replacement schedule and minimize costs in open-cast coal mines.展开更多
The timing and Hamming weight attacks on the data encryption standard (DES) cryptosystem for minimal cost encryption scheme is presented in this article. In the attack, timing information on encryption processing is...The timing and Hamming weight attacks on the data encryption standard (DES) cryptosystem for minimal cost encryption scheme is presented in this article. In the attack, timing information on encryption processing is used to select and collect effective plaintexts for attack. Then the collected plaintexts are utilized to infer the expanded key differences of the secret key, from which most bits of the expanded secret key are recovered. The remaining bits of the expanded secret key are deduced by the correlations between Hamming weight values of the input of the S-boxes in the first-round. Finally, from the linear relation of the encryption time and the secret key's Hamming weight, the entire 56 bits of the secret key are thoroughly recovered. Using the attack, the minimal cost encryption scheme can be broken with 2^23 known plaintexts and about 2^21 calculations at a success rate a 〉 99%. The attack has lower computing complexity, and the method is more effective than other previous methods.展开更多
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University。
文摘This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears as commonplace in many realistic scenarios.Regarding this,we consider graphs composed of rings,with some possible connected paths between them.Without prior knowledge of the exact node permutations on rings,the existence of each edge can be unraveled through edge testing at a unit cost in one step.The problem examined is that of determining whether the given nodes are connected by a path or separated by a cut,with the minimum expected costs involved.Dividing the problem into different cases based on different topologies of the ring-based networks,we propose the corresponding policies that aim to quickly seek the paths between nodes.A common feature shared by all those policies is that we stick to going in the same direction during edge searching,with edge testing in each step only involving the test between the source and the node that has been tested most.The simple searching rule,interestingly,can be interpreted as a delightful property stemming from the neat structure of ring-based networks,which makes the searching process not rely on any sophisticated behaviors.We prove the optimality of the proposed policies by calculating the expected cost incurred and making a comparison with the other class of strategies.The effectiveness of the proposed policies is also verified through extensive simulations,from which we even disclose three extra intriguing findings:i)in a onering network,the cost will grow drastically with the number of designated nodes when the number is small and will grow slightly when that number is large;ii)in ring-based network,Depth First is optimal in detecting the connectivity between designated nodes;iii)the problem of multi-ring networks shares large similarity with that of two-ring networks,and a larger number of ties between rings will not influence the expected cost.
文摘To gain a competitive edge within the international and compet让ive setting of coal markets, coal producers must find new ways of reducing costs. Increasing bench drilling efficiency and performance in open-cast coal mines has the potential to generate savings. Specifically, monitoring, analyzing, and optimizing the drilling operation can reduce drilling costs. For example, determining the optimal drill bit replacement time will help to achieve the desirable penetration rate. This paper presents a life data analysis of drill bits to fit a statistical distribution using failure records. These results are then used to formulate a cost minimization problem to estimate the drill bit replacement time using the evolutionary algorithm. The effect of cost on the uncertainty associated with replacement time is assessed through Monte-Carlo simulation. The relationship between the total expected replacement cost and replacement time is also presented. A case study shows that the proposed approach can be used to assist with designing a drill bit replacement schedule and minimize costs in open-cast coal mines.
基金supported by the National Basic Research Program of China (2007CB807902, 2007CB807903)the Education Innovation Foundation of Institution and University of Beijing (2004).
文摘The timing and Hamming weight attacks on the data encryption standard (DES) cryptosystem for minimal cost encryption scheme is presented in this article. In the attack, timing information on encryption processing is used to select and collect effective plaintexts for attack. Then the collected plaintexts are utilized to infer the expanded key differences of the secret key, from which most bits of the expanded secret key are recovered. The remaining bits of the expanded secret key are deduced by the correlations between Hamming weight values of the input of the S-boxes in the first-round. Finally, from the linear relation of the encryption time and the secret key's Hamming weight, the entire 56 bits of the secret key are thoroughly recovered. Using the attack, the minimal cost encryption scheme can be broken with 2^23 known plaintexts and about 2^21 calculations at a success rate a 〉 99%. The attack has lower computing complexity, and the method is more effective than other previous methods.