In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i...In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.展开更多
In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to cont...In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of NUAA(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China(No.BK20181289).
文摘In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71671059,71401048,71521001,71690230,71690235,and 71472058)the Anhui Provincial Natural Science Foundation,China(Grant No.1508085MG140)
文摘In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.