Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are...Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.展开更多
Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is...Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
Consider the standard linear model where x_x,x_2… are assumed to be the known p-vectors, β the unknown p-vector of regression coefficients, and e_1, e_2, …the independent random error sequence, each having a median...Consider the standard linear model where x_x,x_2… are assumed to be the known p-vectors, β the unknown p-vector of regression coefficients, and e_1, e_2, …the independent random error sequence, each having a median zero. Define the minimum L_1norm estimator as,the solution of the minimization problem inf It is proved in this paper that is asymptotically normal under very weak conditions. In particular, the condition imposed on {xi} is exactly the same which ensures the asymptotic normality of least-squares estimate:展开更多
In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum ris...In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum risk equivariant estimator under symmetric entropy loss is given, and the minimaxity of the minimum risk equivariant estimator is proved. The results with regard to admissibility and inadmissibility of a class of linear estimators of the form cT(X) + d are given, where T(X) Gamma(v, θ).展开更多
The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about th...The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about the relationship between the two estimates.Firstly,the authorsconsider the classical linear model in which the coefficient matrix of the linear model is deterministic,and the necessary and sufficient condition for equivalence of the two estimates is derived.Moreover,under certain conditions on variance matrix invertibility,the two estimates can be identical providedthat they use the same a priori information of the parameter being estimated.Secondly,the authorsconsider the linear model with random coefficient matrix which is called the extended linear model;under certain conditions on variance matrix invertibility,it is proved that the former outperforms thelatter when using the same a priori information of the parameter.展开更多
This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and ...This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.展开更多
Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by u...Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by using an NComputing device that can allow multi-users but only one computer is needed. This intuitively can save energy, space as well as cost. In this paper, we propose a simple and realistic NComputing architecture to study the energy and power-efficient consumption of desktop computer systems by using the NComputing device. We also propose new approaches to estimate the reliability of k-out-of-n systems based on the delta method. The k-out-of-n system consisting of n subsystems works if and only if at least k-of-the-n subsystems work. More specificly, we develop approaches to obtain the reliability estimation for the k-out-of-n systems which is composed of n independent and identically distributed subsystems where each subsystem (or energy-efficient usage application) can be assumed to follow a two-parameter exponential lifetime distribution function. The detailed derivations of reliability estimation of k-out-of-n systems based on the biased-corrected estimator, known as delta method, the uniformly minimum variance unbiased estimate (UMVUE) and maximum likelihood estimate (MLE) are discussed. An energy-management NComputing application is discussed to illustrate the reliability results in terms of the energy consumption usages of a computer system with qua(t-core, 8 GB of RAM, and a GeForce 9800GX-2 graphics card to perform various complex applications. The estimated reliability values of systems based on the UMVUE and the delta method differ only slightly. Often the UMVUE of reliability for a complex system is a lot more difficult to obtain, if not impossible. The delta method seems to be a simple and better approach to obtain the reliability estimation of complex systems. The results of this study also show that, in practice, the NComputing architecture improves both energy cost saving and energy efficient living spaces.展开更多
In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recove...In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.展开更多
In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical appr...In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.展开更多
In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show...In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.展开更多
In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovest...In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.展开更多
Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train ...Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.展开更多
This paper proposes a minimum contrast methodology to estimate the drift parameter for the Ornstein-Uhlenbeck process driven by fractional Brownian motion of Hurst index, which is greater than one half. Both the stron...This paper proposes a minimum contrast methodology to estimate the drift parameter for the Ornstein-Uhlenbeck process driven by fractional Brownian motion of Hurst index, which is greater than one half. Both the strong consistency and the asymptotic normality of this minimum contrast estimator are studied based on the Laplace transform. The numerical simulation results confirm the theoretical analysis and show that the minimum contrast technique is effective and efficient.展开更多
This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion f...This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix Ck.Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.展开更多
Through reusing software test components, automated software testing generally costs less than manual software testing. There has been much research on how to develop the reusable test components, but few fall on how ...Through reusing software test components, automated software testing generally costs less than manual software testing. There has been much research on how to develop the reusable test components, but few fall on how to estimate the reusability of test conlponents for automated testing. The purpose of this paper is to present a method of minimum reusability estimation for automated testing based on the return on investment (ROI) model. Minimum reusability is a benchmark for the whole automated testing process. If the reusability in one test execution is less than the minimum reusability, some new strategies must be adopted ill the next test execution to increase the reusability. Only by this way, we can reduce unnecessary costs and finally get a return on the investment of automated testing.展开更多
For a seemingly Unrelated regression system with the assumption of normality,a necessary and sufficient condition for the existence of the Uniformly Minimum Risk Unbiased (UMRU)estimator of regression coefficients und...For a seemingly Unrelated regression system with the assumption of normality,a necessary and sufficient condition for the existence of the Uniformly Minimum Risk Unbiased (UMRU)estimator of regression coefficients under strictly convex loss is obtained;it is proved that any unbiased estimator can not improve the least squares estimator;it is also shown that no UMRU estimator exists under missing observations.展开更多
We consider the extrema estimation problem in large-scale radio-frequency identification(RFID)systems,where there are thousands of tags and each tag contains a finite value.The objective is to design an extrema estima...We consider the extrema estimation problem in large-scale radio-frequency identification(RFID)systems,where there are thousands of tags and each tag contains a finite value.The objective is to design an extrema estimation protocol with the minimum execution time.Because the standard binary search protocol wastes much time due to inter-frame overhead,we propose a parameterized protocol and treat the number of slots in a frame as an unknown parameter.We formulate the problem and show how to find the best parameter to minimize the worst-case execution time.Finally,we propose two rules to further reduce the execution time.The first is to find and remove redundant frames.The second is to concatenate a frame from minimum value estimation with a frame from maximum value estimation to reduce the total number of frames.Simulations show that,in a typical scenario,the proposed protocol reduces execution time by 79%compared with the standard binary search protocol.展开更多
Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and th...Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and the analysis of variance (Hendreson III's) estimate of variance components being uniformly minimum variance unbiased estimates simultaneously. This result can be applied to the problems of finding uniformly optimal unbiased tests and uniformly most accurate unbiased confidential interval on parameters of interest, and for finding equivalences of several common estimates of variance components.展开更多
文摘Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.
文摘Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process.
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
基金Project supported by the National Natural Science Foundation of China and also supported by the U. S. Office of Naval Research and Air Force Office of Scientific Research.
文摘Consider the standard linear model where x_x,x_2… are assumed to be the known p-vectors, β the unknown p-vector of regression coefficients, and e_1, e_2, …the independent random error sequence, each having a median zero. Define the minimum L_1norm estimator as,the solution of the minimization problem inf It is proved in this paper that is asymptotically normal under very weak conditions. In particular, the condition imposed on {xi} is exactly the same which ensures the asymptotic normality of least-squares estimate:
基金The SRFDPHE(20070183023)the NSF(10571073,J0630104)of China
文摘In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum risk equivariant estimator under symmetric entropy loss is given, and the minimaxity of the minimum risk equivariant estimator is proved. The results with regard to admissibility and inadmissibility of a class of linear estimators of the form cT(X) + d are given, where T(X) Gamma(v, θ).
基金supported in part by the National Natural Science Foundation of China under Grant Nos 60232010, 60574032the Project 863 under Grant No. 2006AA12A104
文摘The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about the relationship between the two estimates.Firstly,the authorsconsider the classical linear model in which the coefficient matrix of the linear model is deterministic,and the necessary and sufficient condition for equivalence of the two estimates is derived.Moreover,under certain conditions on variance matrix invertibility,the two estimates can be identical providedthat they use the same a priori information of the parameter being estimated.Secondly,the authorsconsider the linear model with random coefficient matrix which is called the extended linear model;under certain conditions on variance matrix invertibility,it is proved that the former outperforms thelatter when using the same a priori information of the parameter.
基金Project supported by the National Natural Science Foundation of China (Grant No.60972055)the Development Foundation of the Education Commission of Shanghai Municipality (Grant No.09CG40)+1 种基金the Shanghai Pujiang Program (Grant No.08PJ14057)the Science and Technology Commission of Shanghai Municipality (Grant No.10220710300)
文摘This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.
基金supported by Rutgers CCC Green Computing Initiative
文摘Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by using an NComputing device that can allow multi-users but only one computer is needed. This intuitively can save energy, space as well as cost. In this paper, we propose a simple and realistic NComputing architecture to study the energy and power-efficient consumption of desktop computer systems by using the NComputing device. We also propose new approaches to estimate the reliability of k-out-of-n systems based on the delta method. The k-out-of-n system consisting of n subsystems works if and only if at least k-of-the-n subsystems work. More specificly, we develop approaches to obtain the reliability estimation for the k-out-of-n systems which is composed of n independent and identically distributed subsystems where each subsystem (or energy-efficient usage application) can be assumed to follow a two-parameter exponential lifetime distribution function. The detailed derivations of reliability estimation of k-out-of-n systems based on the biased-corrected estimator, known as delta method, the uniformly minimum variance unbiased estimate (UMVUE) and maximum likelihood estimate (MLE) are discussed. An energy-management NComputing application is discussed to illustrate the reliability results in terms of the energy consumption usages of a computer system with qua(t-core, 8 GB of RAM, and a GeForce 9800GX-2 graphics card to perform various complex applications. The estimated reliability values of systems based on the UMVUE and the delta method differ only slightly. Often the UMVUE of reliability for a complex system is a lot more difficult to obtain, if not impossible. The delta method seems to be a simple and better approach to obtain the reliability estimation of complex systems. The results of this study also show that, in practice, the NComputing architecture improves both energy cost saving and energy efficient living spaces.
文摘In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 60773085 and 60801051)
文摘In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.
基金National Natural Science Foundation of China(No.41661091)。
文摘In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.
基金Supported by China Mathematics Tian Yuan Youth Foundation (10226024) and China Postdoctoral Science Foundation.
文摘In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.
基金The authors thank the anonymous reviewers for their valuable suggestions.This work is supported by funds National Natural Science Foundation of China(Grants No.52162048,61991404 and 62003138)National Key Research and Development Program of China(Grant No.2020YFB1713703)Jiangxi Graduate Innovation Fund Project(Grant No.YC2021-S446).
文摘Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.
基金National Science Fund for Distinguished Young Scholars of China (Grant No. 70825005)National Natural Science Foundation of China (Grant No. 71171086)+2 种基金Natural Science Foundation of Guangdong Province of China (Grant No. S2011040005723)the Fundamental Research Funds for the Central Universities, SCUT (2012ZM0029)supported by GDUPS(2010)
文摘This paper proposes a minimum contrast methodology to estimate the drift parameter for the Ornstein-Uhlenbeck process driven by fractional Brownian motion of Hurst index, which is greater than one half. Both the strong consistency and the asymptotic normality of this minimum contrast estimator are studied based on the Laplace transform. The numerical simulation results confirm the theoretical analysis and show that the minimum contrast technique is effective and efficient.
文摘This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix Ck.Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.
基金Foundation item: the National Natural Science Foundation of China (No. 90718037)
文摘Through reusing software test components, automated software testing generally costs less than manual software testing. There has been much research on how to develop the reusable test components, but few fall on how to estimate the reusability of test conlponents for automated testing. The purpose of this paper is to present a method of minimum reusability estimation for automated testing based on the return on investment (ROI) model. Minimum reusability is a benchmark for the whole automated testing process. If the reusability in one test execution is less than the minimum reusability, some new strategies must be adopted ill the next test execution to increase the reusability. Only by this way, we can reduce unnecessary costs and finally get a return on the investment of automated testing.
基金Supported by the National Natural Science Foundation of China.
文摘For a seemingly Unrelated regression system with the assumption of normality,a necessary and sufficient condition for the existence of the Uniformly Minimum Risk Unbiased (UMRU)estimator of regression coefficients under strictly convex loss is obtained;it is proved that any unbiased estimator can not improve the least squares estimator;it is also shown that no UMRU estimator exists under missing observations.
基金supported by the National Natural Science Foundation of China under Grant Nos.61972199,61672283,61502232,and 61502251the Jiangsu Key Laboratory of Big Data Security Intelligent Processing,Nanjing University of Posts and Telecommunications under Grant No.BDSIP1907,China Postdoctoral Science Foundation under Grant No.2016M601859the Post-Doctoral Fund of Jiangsu Province of China under Grant No.1701047A.
文摘We consider the extrema estimation problem in large-scale radio-frequency identification(RFID)systems,where there are thousands of tags and each tag contains a finite value.The objective is to design an extrema estimation protocol with the minimum execution time.Because the standard binary search protocol wastes much time due to inter-frame overhead,we propose a parameterized protocol and treat the number of slots in a frame as an unknown parameter.We formulate the problem and show how to find the best parameter to minimize the worst-case execution time.Finally,we propose two rules to further reduce the execution time.The first is to find and remove redundant frames.The second is to concatenate a frame from minimum value estimation with a frame from maximum value estimation to reduce the total number of frames.Simulations show that,in a typical scenario,the proposed protocol reduces execution time by 79%compared with the standard binary search protocol.
基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality PHR (IHLB)National Natural Science Foundation of China (NSFC) (10801005) and (NSFC) (10771010)the Intramural Research Program of the National Institute of Child Health and Human Development,National Institute of Health
文摘Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and the analysis of variance (Hendreson III's) estimate of variance components being uniformly minimum variance unbiased estimates simultaneously. This result can be applied to the problems of finding uniformly optimal unbiased tests and uniformly most accurate unbiased confidential interval on parameters of interest, and for finding equivalences of several common estimates of variance components.