Prorocentrum minimum is a bloom-forming, planktonic mixotrophic dinoflagellate, and can cause stress in shrimp ponds. In this study, healthy Exopalaemon carinicauda were exposed to 5 × 10^4 cells mL^-1 P. minimum...Prorocentrum minimum is a bloom-forming, planktonic mixotrophic dinoflagellate, and can cause stress in shrimp ponds. In this study, healthy Exopalaemon carinicauda were exposed to 5 × 10^4 cells mL^-1 P. minimum for 72 hours to investigate the adverse effect of P. minimum on shrimps. Elevated superoxide dismutase(SOD) activity and malondialdehyde(MDA) content, reduced total antioxidant capacity(T-AOC) and catalase(CAT) activity, and regulatory glutathione peroxidase(GPX) activity were found in the hemolymph of E. carinicauda after exposure to P. minimum. In this study, P. minimum exposure induced oxidative stress and caused significant oxidative damage to E. carinicauda. P. minimum exposure increased the expression of HSP70 gene in the hemocyte, gills and hepatopancreas. Compared with the enhanced level of caspase-3 gene mR NA in the hemocyte and gills, the up-regulation of caspase-3 gene in the hepatopancreas was only observed from 3 to 6 h, and then the mRNA level of glutathione-S-transferase(GST) gene increased. These results indicated that GST might be involved in the shrimp hepatopancreas’ defense against P. minimum exposure. The present study demonstrates that exposure to P. minimum could induce oxidative stress and apoptosis in E. carinicauda. The SOD activity, HSP70 and GST(in the hepatopancreas) were evoked to protect cells from oxidative stress and apoptosis. This study will provide new insights into the toxic mechanism of P. minimum on shrimps.展开更多
In Tokyo Bay, blue tide is a phenomenon that seawater presents to be milky blue due to reflection of sunshine off surface water in which a large number of sulfur particles suspend. Its occurrence is because of coastal...In Tokyo Bay, blue tide is a phenomenon that seawater presents to be milky blue due to reflection of sunshine off surface water in which a large number of sulfur particles suspend. Its occurrence is because of coastal upwelling of the oxygen-depleted water at the bottom of the bay induced by the blowing of a northeasterly wind, consequently leading to many deaths of shellfish and some aquatic animals in the bay. In this study, an analytical solution of minimum wind stress for the occurrence of blue tide on the southeast shore of the bay is presented based on a two-layered model, and comparison with observation data of blue tide from 2003 to 2010 shows the validity of this solution. The results of sensitivity analysis to all of parameters involved in this solution were also found to agree with qualitative understandings of blue tide phenomenon.展开更多
In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where t...In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where the tectonic movement is active,resulting in periodic dynamic earthquakes.Each large-scale earthquake causes both accumulation and sudden release of strain energy,instigating changes in the in situ stress environment in the rock mass.This paper first highlights the importance of the magnitude of the minimum principal stress in the design of unlined or shotcrete lined pressure tunnel as water conveyance system used for hydropower schemes.Then we evaluated the influence of local shear faults on the magnitude of the minimum principal stress along the shotcrete lined high pressure tunnel of Upper Tamakoshi Hydroelectric Project(UTHP)in Nepal.A detailed assessment of the in situ stress state is carried out using both measured data and three-dimensional(3D)numerical analyses with FLAC3D.Finally,analysis is carried out on the possible changes in the magnitude of the minimum principal stress in the rock mass caused by seismic movement(dynamic loading).A permanent change in the stress state at and nearby the area of shear zones along the tunnel alignment is found to be an eminent process.展开更多
The stress field in granular soils heap(including piled coal) will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations.Because the f...The stress field in granular soils heap(including piled coal) will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations.Because the former method is not reliable as pressure cells instrumented on the interface between piled coal and the underlying soft soil do not work well, results from numerical methods alone are necessary to be doubly checked with one more method before they are extended to more complex cases. The generalized stress field in granular soils heap is analyzed with Rayleighe Ritz method. The problem is divided into two cases: case A without horizontal constraint on the base and case B with horizontal constraint on the base. In both cases, the displacement functions u(x, y) and v(x, y) are assumed to be cubic polynomials with 12 undetermined parameters, which will satisfy the Cauchy’s partial differential equations, generalized Hooke’s law and boundary equations. A function is built with the Rayleighe Ritz method according to the principle of minimum potential energy, and the problem is converted into solving two undetermined parameters through the variation of the function, while the other parameters are expressed in terms of these two parameters. By comparison of results from the Rayleighe Ritz method and numerical simulations, it is demonstrated that the Rayleighe Ritz method is feasible to study the generalized stress field in granular soils heap. Solutions from numerical methods are verified before being extended to more complicated cases.展开更多
基金supported by the Program of Shandong Leading Talent (No. LNJY2015002)the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02)the Qingdao Planned Projects for Postdoctoral Research Funds (No. ZQ 5120 1617013)
文摘Prorocentrum minimum is a bloom-forming, planktonic mixotrophic dinoflagellate, and can cause stress in shrimp ponds. In this study, healthy Exopalaemon carinicauda were exposed to 5 × 10^4 cells mL^-1 P. minimum for 72 hours to investigate the adverse effect of P. minimum on shrimps. Elevated superoxide dismutase(SOD) activity and malondialdehyde(MDA) content, reduced total antioxidant capacity(T-AOC) and catalase(CAT) activity, and regulatory glutathione peroxidase(GPX) activity were found in the hemolymph of E. carinicauda after exposure to P. minimum. In this study, P. minimum exposure induced oxidative stress and caused significant oxidative damage to E. carinicauda. P. minimum exposure increased the expression of HSP70 gene in the hemocyte, gills and hepatopancreas. Compared with the enhanced level of caspase-3 gene mR NA in the hemocyte and gills, the up-regulation of caspase-3 gene in the hepatopancreas was only observed from 3 to 6 h, and then the mRNA level of glutathione-S-transferase(GST) gene increased. These results indicated that GST might be involved in the shrimp hepatopancreas’ defense against P. minimum exposure. The present study demonstrates that exposure to P. minimum could induce oxidative stress and apoptosis in E. carinicauda. The SOD activity, HSP70 and GST(in the hepatopancreas) were evoked to protect cells from oxidative stress and apoptosis. This study will provide new insights into the toxic mechanism of P. minimum on shrimps.
文摘In Tokyo Bay, blue tide is a phenomenon that seawater presents to be milky blue due to reflection of sunshine off surface water in which a large number of sulfur particles suspend. Its occurrence is because of coastal upwelling of the oxygen-depleted water at the bottom of the bay induced by the blowing of a northeasterly wind, consequently leading to many deaths of shellfish and some aquatic animals in the bay. In this study, an analytical solution of minimum wind stress for the occurrence of blue tide on the southeast shore of the bay is presented based on a two-layered model, and comparison with observation data of blue tide from 2003 to 2010 shows the validity of this solution. The results of sensitivity analysis to all of parameters involved in this solution were also found to agree with qualitative understandings of blue tide phenomenon.
文摘In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where the tectonic movement is active,resulting in periodic dynamic earthquakes.Each large-scale earthquake causes both accumulation and sudden release of strain energy,instigating changes in the in situ stress environment in the rock mass.This paper first highlights the importance of the magnitude of the minimum principal stress in the design of unlined or shotcrete lined pressure tunnel as water conveyance system used for hydropower schemes.Then we evaluated the influence of local shear faults on the magnitude of the minimum principal stress along the shotcrete lined high pressure tunnel of Upper Tamakoshi Hydroelectric Project(UTHP)in Nepal.A detailed assessment of the in situ stress state is carried out using both measured data and three-dimensional(3D)numerical analyses with FLAC3D.Finally,analysis is carried out on the possible changes in the magnitude of the minimum principal stress in the rock mass caused by seismic movement(dynamic loading).A permanent change in the stress state at and nearby the area of shear zones along the tunnel alignment is found to be an eminent process.
文摘The stress field in granular soils heap(including piled coal) will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations.Because the former method is not reliable as pressure cells instrumented on the interface between piled coal and the underlying soft soil do not work well, results from numerical methods alone are necessary to be doubly checked with one more method before they are extended to more complex cases. The generalized stress field in granular soils heap is analyzed with Rayleighe Ritz method. The problem is divided into two cases: case A without horizontal constraint on the base and case B with horizontal constraint on the base. In both cases, the displacement functions u(x, y) and v(x, y) are assumed to be cubic polynomials with 12 undetermined parameters, which will satisfy the Cauchy’s partial differential equations, generalized Hooke’s law and boundary equations. A function is built with the Rayleighe Ritz method according to the principle of minimum potential energy, and the problem is converted into solving two undetermined parameters through the variation of the function, while the other parameters are expressed in terms of these two parameters. By comparison of results from the Rayleighe Ritz method and numerical simulations, it is demonstrated that the Rayleighe Ritz method is feasible to study the generalized stress field in granular soils heap. Solutions from numerical methods are verified before being extended to more complicated cases.