This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing t...This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing terms of the equations as controls. These equations consist of integro-differential parts containing weakly singular kernels. The feasibility of the numerical method is demonstrated by comparing the minimum time and corresponding possible time by using extreme controls to reach the attainable region under different initial conditions.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in ...This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.展开更多
The wireline formation tester (WFT) is an important tool for formation evaluation, such as calculating the formation pressure and permeability, identifying the fluid type, and determining the interface between oil a...The wireline formation tester (WFT) is an important tool for formation evaluation, such as calculating the formation pressure and permeability, identifying the fluid type, and determining the interface between oil and water. However, in a low porosity and low permeability formation, the supercharge pressure effect exists, since the mudcake has a poor sealing ability. The mudcake cannot isolate the hydrostatic pressure of the formation around the borehole and the mud seeps into the formations, leading to inaccurate formation pressure measurement. At the same time, the tool can be easily stuck in the low porosity/low permeability formation due to the long waiting and testing time. We present a method for determining the minimum testing time for the wireline formation tester. The pressure distribution of the mudcake and the formation were respectively calculated with the finite element method (FEM). The radius of the influence of mud pressure was also computed, and the minimum testing time in low porosity/low permeability formations was determined within a range of values for different formation permeabilities. The determination of the minimum testing time ensures an accurate formation pressure measurement and minimizes possible accidents due to long waiting and testing time.展开更多
The previous Decentralised Cognitive Medium Access Control(DC-MAC) protocol allows Secondary Users(SUs) to independently search for spectrum access opportunities without the need for a central coordinator.DC-MAC assum...The previous Decentralised Cognitive Medium Access Control(DC-MAC) protocol allows Secondary Users(SUs) to independently search for spectrum access opportunities without the need for a central coordinator.DC-MAC assumes that the detection scheme is ideal at the Physical(PHY) layer.In fact,a more complex detection algorithm is impractical in distributed spectrum sharing scenarios.Energy Detection(ED) at the PHY layer has become the most common method because of its low computational and implementation complexities.Thus,it is essential to integrate the DC-MAC with ED at the PHY layer.However,ED requires the Minimum Sampling Time(MST)duration to achieve the target detection probability in low Signal-to-Noise Ratio(SNR)environments.Otherwise,it cannot achieve the expected detection performance.In this paper,we derive an accurate expression of MST for ED in low SNR environments.Then,we propose an Optimised DC-MAC(ODC-MAC) protocol which is based on MST,and which amends the aforementioned problems of DC-MAC with ED.Moreover,the closed-form expressions for the unreliable data transmission probability are derived for both DC-MAC and ODC-MAC.We show that the simulation results agree well with the theoretical analyses.The proposed ODC-MAC can improve the data transmission reliability and enhance the throughput compared to the performance of the traditional DC-MAC.展开更多
By using a phase-plane analysis method,the minimum-time trajectory plan-ning problem of a manipulator moving along a given geometric path subject to the con-straints of joint velocities and accelerations is solved in ...By using a phase-plane analysis method,the minimum-time trajectory plan-ning problem of a manipulator moving along a given geometric path subject to the con-straints of joint velocities and accelerations is solved in this paper.The simulation resultfor the first three joints of PUMA-560 is given.展开更多
The relation of matter wave, which is well-known as a hypothesis proposed by de Broglie in 1923, gave basis for establishing the quantum mechanics. After that, experimental results revealed that a micro particle has a...The relation of matter wave, which is well-known as a hypothesis proposed by de Broglie in 1923, gave basis for establishing the quantum mechanics. After that, experimental results revealed that a micro particle has a wave nature. However, the theoretical validity of the relation itself has never been revealed since his proposal. Theoretical basis that a micro particle has a wave nature has been thus disregarded in the unsolved state. The diffusion equation having been accepted as Fick’s second law was derived from the theory of Markov process in mathematics. It was then revealed that the diffusivity D depends on an angular momentum of a micro particle in a local space. The fact being unable to discriminate between micro particles in a local space resulted in having to accept the existence of minimum time t<sub>0 </sub>(>0) in the quantum mechanics. Based on t<sub>0</sub> and D obtained here, the theoretical validity of relation of matter wave was confirmed. Denying the density theorem in mathematics for time in physics indicates that the probabilistic interpretation is essentially indispensable for understanding the quantum mechanics. The logical necessity of quantum theory itself is thus understandable through introducing t<sub>0</sub> into the Newton mechanics. It is remarkable that the value of t<sub>0</sub> between 1.14×10<sup>-17</sup> s ≤ t<sub>0 </sub>≤1.76×10<sup>-14 </sup>s obtained here is extremely larger than that of the well-known Planck time t<sub>p</sub>=5.396×10<sup>-44 </sup>s.展开更多
The traditional tangent impulse interception problem does not consider the influence of actual deviation.However,by taking the actual state deviation of the interceptor into the orbit design process,an interception or...The traditional tangent impulse interception problem does not consider the influence of actual deviation.However,by taking the actual state deviation of the interceptor into the orbit design process,an interception orbit that is more robust than the nominal orbit can be obtained.Therefore,we study the minimum time interception problem and the minimum terminal interception error problem under tangent impulse conditions and give an orbit optimization method that considers the interception time and the interception uncertainty.First,we express the interceptor's transfer time equation as a form of flight path angle,establish a global optimization model for solving the minimum time tangent impulse interception and give a hybrid optimization algorithm based on Augmented Lagrange Genetic Algorithm-Sequential Quadratic Programming(ALGA-SQP).Secondly,we use the universal time equation and Bootstrap resampling technology to calculate the interceptor's terminal error distribution and establish the relevant global optimization model by using the circumscribed cuboid volume of the interceptor's terminal position error ellipsoid as the optimization index.Finally,we combined the above two singleobjective optimization models to establish a global multi-objective optimization model that considers interception time and interception uncertainty and gave a hybrid multi-objective optimization algorithm based on Non-dominated Sorting Genetic Algorithm Ⅱ-Goal Achievement Method(NSGA2-GAM).The simulation example verifies the effectiveness of this method.展开更多
A problem similar to the famous brachistochrone problem is examined in which, instead of a smooth curve, the path consists of two straight-line sections, one slant and one horizontal. The condition for minimum sliding...A problem similar to the famous brachistochrone problem is examined in which, instead of a smooth curve, the path consists of two straight-line sections, one slant and one horizontal. The condition for minimum sliding time is investigated, producing results that are both counterintuitive and interesting.展开更多
文摘This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing terms of the equations as controls. These equations consist of integro-differential parts containing weakly singular kernels. The feasibility of the numerical method is demonstrated by comparing the minimum time and corresponding possible time by using extreme controls to reach the attainable region under different initial conditions.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61673198)the Provincial Natural Science Foundation of Liaoning Province(20180550473)
文摘This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.
文摘The wireline formation tester (WFT) is an important tool for formation evaluation, such as calculating the formation pressure and permeability, identifying the fluid type, and determining the interface between oil and water. However, in a low porosity and low permeability formation, the supercharge pressure effect exists, since the mudcake has a poor sealing ability. The mudcake cannot isolate the hydrostatic pressure of the formation around the borehole and the mud seeps into the formations, leading to inaccurate formation pressure measurement. At the same time, the tool can be easily stuck in the low porosity/low permeability formation due to the long waiting and testing time. We present a method for determining the minimum testing time for the wireline formation tester. The pressure distribution of the mudcake and the formation were respectively calculated with the finite element method (FEM). The radius of the influence of mud pressure was also computed, and the minimum testing time in low porosity/low permeability formations was determined within a range of values for different formation permeabilities. The determination of the minimum testing time ensures an accurate formation pressure measurement and minimizes possible accidents due to long waiting and testing time.
基金supported by the National Natural Science Foundation of China under Grants No.61271259,No.61301123the Chongqing Natural Science Foundation under Grant No.CTSC2011jjA40006+2 种基金the Research Project of Chongqing Education Commission under Grants No.KJ120501,No.KJ120502,No.KJ130536the Special Fund of Chongqing Key Laboratory(CSTC)the Project of Chongqing Municipal Education Commission under Grant No.Kjzh11206
文摘The previous Decentralised Cognitive Medium Access Control(DC-MAC) protocol allows Secondary Users(SUs) to independently search for spectrum access opportunities without the need for a central coordinator.DC-MAC assumes that the detection scheme is ideal at the Physical(PHY) layer.In fact,a more complex detection algorithm is impractical in distributed spectrum sharing scenarios.Energy Detection(ED) at the PHY layer has become the most common method because of its low computational and implementation complexities.Thus,it is essential to integrate the DC-MAC with ED at the PHY layer.However,ED requires the Minimum Sampling Time(MST)duration to achieve the target detection probability in low Signal-to-Noise Ratio(SNR)environments.Otherwise,it cannot achieve the expected detection performance.In this paper,we derive an accurate expression of MST for ED in low SNR environments.Then,we propose an Optimised DC-MAC(ODC-MAC) protocol which is based on MST,and which amends the aforementioned problems of DC-MAC with ED.Moreover,the closed-form expressions for the unreliable data transmission probability are derived for both DC-MAC and ODC-MAC.We show that the simulation results agree well with the theoretical analyses.The proposed ODC-MAC can improve the data transmission reliability and enhance the throughput compared to the performance of the traditional DC-MAC.
文摘By using a phase-plane analysis method,the minimum-time trajectory plan-ning problem of a manipulator moving along a given geometric path subject to the con-straints of joint velocities and accelerations is solved in this paper.The simulation resultfor the first three joints of PUMA-560 is given.
文摘The relation of matter wave, which is well-known as a hypothesis proposed by de Broglie in 1923, gave basis for establishing the quantum mechanics. After that, experimental results revealed that a micro particle has a wave nature. However, the theoretical validity of the relation itself has never been revealed since his proposal. Theoretical basis that a micro particle has a wave nature has been thus disregarded in the unsolved state. The diffusion equation having been accepted as Fick’s second law was derived from the theory of Markov process in mathematics. It was then revealed that the diffusivity D depends on an angular momentum of a micro particle in a local space. The fact being unable to discriminate between micro particles in a local space resulted in having to accept the existence of minimum time t<sub>0 </sub>(>0) in the quantum mechanics. Based on t<sub>0</sub> and D obtained here, the theoretical validity of relation of matter wave was confirmed. Denying the density theorem in mathematics for time in physics indicates that the probabilistic interpretation is essentially indispensable for understanding the quantum mechanics. The logical necessity of quantum theory itself is thus understandable through introducing t<sub>0</sub> into the Newton mechanics. It is remarkable that the value of t<sub>0</sub> between 1.14×10<sup>-17</sup> s ≤ t<sub>0 </sub>≤1.76×10<sup>-14 </sup>s obtained here is extremely larger than that of the well-known Planck time t<sub>p</sub>=5.396×10<sup>-44 </sup>s.
文摘The traditional tangent impulse interception problem does not consider the influence of actual deviation.However,by taking the actual state deviation of the interceptor into the orbit design process,an interception orbit that is more robust than the nominal orbit can be obtained.Therefore,we study the minimum time interception problem and the minimum terminal interception error problem under tangent impulse conditions and give an orbit optimization method that considers the interception time and the interception uncertainty.First,we express the interceptor's transfer time equation as a form of flight path angle,establish a global optimization model for solving the minimum time tangent impulse interception and give a hybrid optimization algorithm based on Augmented Lagrange Genetic Algorithm-Sequential Quadratic Programming(ALGA-SQP).Secondly,we use the universal time equation and Bootstrap resampling technology to calculate the interceptor's terminal error distribution and establish the relevant global optimization model by using the circumscribed cuboid volume of the interceptor's terminal position error ellipsoid as the optimization index.Finally,we combined the above two singleobjective optimization models to establish a global multi-objective optimization model that considers interception time and interception uncertainty and gave a hybrid multi-objective optimization algorithm based on Non-dominated Sorting Genetic Algorithm Ⅱ-Goal Achievement Method(NSGA2-GAM).The simulation example verifies the effectiveness of this method.
文摘A problem similar to the famous brachistochrone problem is examined in which, instead of a smooth curve, the path consists of two straight-line sections, one slant and one horizontal. The condition for minimum sliding time is investigated, producing results that are both counterintuitive and interesting.