The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about th...The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about the relationship between the two estimates.Firstly,the authorsconsider the classical linear model in which the coefficient matrix of the linear model is deterministic,and the necessary and sufficient condition for equivalence of the two estimates is derived.Moreover,under certain conditions on variance matrix invertibility,the two estimates can be identical providedthat they use the same a priori information of the parameter being estimated.Secondly,the authorsconsider the linear model with random coefficient matrix which is called the extended linear model;under certain conditions on variance matrix invertibility,it is proved that the former outperforms thelatter when using the same a priori information of the parameter.展开更多
Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is...Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process.展开更多
This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion f...This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix Ck.Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.展开更多
Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by u...Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by using an NComputing device that can allow multi-users but only one computer is needed. This intuitively can save energy, space as well as cost. In this paper, we propose a simple and realistic NComputing architecture to study the energy and power-efficient consumption of desktop computer systems by using the NComputing device. We also propose new approaches to estimate the reliability of k-out-of-n systems based on the delta method. The k-out-of-n system consisting of n subsystems works if and only if at least k-of-the-n subsystems work. More specificly, we develop approaches to obtain the reliability estimation for the k-out-of-n systems which is composed of n independent and identically distributed subsystems where each subsystem (or energy-efficient usage application) can be assumed to follow a two-parameter exponential lifetime distribution function. The detailed derivations of reliability estimation of k-out-of-n systems based on the biased-corrected estimator, known as delta method, the uniformly minimum variance unbiased estimate (UMVUE) and maximum likelihood estimate (MLE) are discussed. An energy-management NComputing application is discussed to illustrate the reliability results in terms of the energy consumption usages of a computer system with qua(t-core, 8 GB of RAM, and a GeForce 9800GX-2 graphics card to perform various complex applications. The estimated reliability values of systems based on the UMVUE and the delta method differ only slightly. Often the UMVUE of reliability for a complex system is a lot more difficult to obtain, if not impossible. The delta method seems to be a simple and better approach to obtain the reliability estimation of complex systems. The results of this study also show that, in practice, the NComputing architecture improves both energy cost saving and energy efficient living spaces.展开更多
Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train ...Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.展开更多
Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and th...Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and the analysis of variance (Hendreson III's) estimate of variance components being uniformly minimum variance unbiased estimates simultaneously. This result can be applied to the problems of finding uniformly optimal unbiased tests and uniformly most accurate unbiased confidential interval on parameters of interest, and for finding equivalences of several common estimates of variance components.展开更多
Satellite Based Augmentation Systems(SBASs)improve the positioning accuracy and integrity by broadcasting to the civil aviation community the corrections and integrity parameters.A snapshot algorithm based on the mini...Satellite Based Augmentation Systems(SBASs)improve the positioning accuracy and integrity by broadcasting to the civil aviation community the corrections and integrity parameters.A snapshot algorithm based on the minimum variance estimation is investigated in this study to calculate the satellite clock and orbit corrections.A chi-square test is performed on the remaining errors in the corrected ephemeris to guarantee the integrity.User Differential Range Error(UDRE)and scaling matrix contained in Message Type 28 are derived using the covariance information based on the assumption that one of the reference stations failed.A software package is developed and applied in the real data collected at 26 stations.International GNSS(Global Navigation Satellite System)Service(IGS)precise clock and orbit products are taken as the references to assess the accuracy of corrections.For both Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),the range accuracy of 0.10 m can be achieved with the employment of the derived corrections.No obvious performance difference between GPS and BDS is found.UDREs for all visible satellites are generated with the maximum index of 12 and minimum index of 3.The geometric range differences calculated with IGS precise products and broadcast ephemeris are employed to assess the integrity of UDRE.It is found that the UDRE is able to bound the residuals with 99.9%confidence which meet the requirement of aviation users.With ionospheric delay corrected by Global Ionosphere Map(GIM),the positioning accuracy of 0.98 m with GPS corrections and 0.80 m with multi-constellation augmentation can be achieved which indicates a significant improvement of GPS standalone results.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos 60232010, 60574032the Project 863 under Grant No. 2006AA12A104
文摘The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about the relationship between the two estimates.Firstly,the authorsconsider the classical linear model in which the coefficient matrix of the linear model is deterministic,and the necessary and sufficient condition for equivalence of the two estimates is derived.Moreover,under certain conditions on variance matrix invertibility,the two estimates can be identical providedthat they use the same a priori information of the parameter being estimated.Secondly,the authorsconsider the linear model with random coefficient matrix which is called the extended linear model;under certain conditions on variance matrix invertibility,it is proved that the former outperforms thelatter when using the same a priori information of the parameter.
文摘Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process.
文摘This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix Ck.Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.
基金supported by Rutgers CCC Green Computing Initiative
文摘Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by using an NComputing device that can allow multi-users but only one computer is needed. This intuitively can save energy, space as well as cost. In this paper, we propose a simple and realistic NComputing architecture to study the energy and power-efficient consumption of desktop computer systems by using the NComputing device. We also propose new approaches to estimate the reliability of k-out-of-n systems based on the delta method. The k-out-of-n system consisting of n subsystems works if and only if at least k-of-the-n subsystems work. More specificly, we develop approaches to obtain the reliability estimation for the k-out-of-n systems which is composed of n independent and identically distributed subsystems where each subsystem (or energy-efficient usage application) can be assumed to follow a two-parameter exponential lifetime distribution function. The detailed derivations of reliability estimation of k-out-of-n systems based on the biased-corrected estimator, known as delta method, the uniformly minimum variance unbiased estimate (UMVUE) and maximum likelihood estimate (MLE) are discussed. An energy-management NComputing application is discussed to illustrate the reliability results in terms of the energy consumption usages of a computer system with qua(t-core, 8 GB of RAM, and a GeForce 9800GX-2 graphics card to perform various complex applications. The estimated reliability values of systems based on the UMVUE and the delta method differ only slightly. Often the UMVUE of reliability for a complex system is a lot more difficult to obtain, if not impossible. The delta method seems to be a simple and better approach to obtain the reliability estimation of complex systems. The results of this study also show that, in practice, the NComputing architecture improves both energy cost saving and energy efficient living spaces.
基金The authors thank the anonymous reviewers for their valuable suggestions.This work is supported by funds National Natural Science Foundation of China(Grants No.52162048,61991404 and 62003138)National Key Research and Development Program of China(Grant No.2020YFB1713703)Jiangxi Graduate Innovation Fund Project(Grant No.YC2021-S446).
文摘Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.
基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality PHR (IHLB)National Natural Science Foundation of China (NSFC) (10801005) and (NSFC) (10771010)the Intramural Research Program of the National Institute of Child Health and Human Development,National Institute of Health
文摘Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and the analysis of variance (Hendreson III's) estimate of variance components being uniformly minimum variance unbiased estimates simultaneously. This result can be applied to the problems of finding uniformly optimal unbiased tests and uniformly most accurate unbiased confidential interval on parameters of interest, and for finding equivalences of several common estimates of variance components.
基金the Equipment Pre-research Foundation of China(No.61405180103)the National Natural Science Foundation of China(No.41974041).
文摘Satellite Based Augmentation Systems(SBASs)improve the positioning accuracy and integrity by broadcasting to the civil aviation community the corrections and integrity parameters.A snapshot algorithm based on the minimum variance estimation is investigated in this study to calculate the satellite clock and orbit corrections.A chi-square test is performed on the remaining errors in the corrected ephemeris to guarantee the integrity.User Differential Range Error(UDRE)and scaling matrix contained in Message Type 28 are derived using the covariance information based on the assumption that one of the reference stations failed.A software package is developed and applied in the real data collected at 26 stations.International GNSS(Global Navigation Satellite System)Service(IGS)precise clock and orbit products are taken as the references to assess the accuracy of corrections.For both Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),the range accuracy of 0.10 m can be achieved with the employment of the derived corrections.No obvious performance difference between GPS and BDS is found.UDREs for all visible satellites are generated with the maximum index of 12 and minimum index of 3.The geometric range differences calculated with IGS precise products and broadcast ephemeris are employed to assess the integrity of UDRE.It is found that the UDRE is able to bound the residuals with 99.9%confidence which meet the requirement of aviation users.With ionospheric delay corrected by Global Ionosphere Map(GIM),the positioning accuracy of 0.98 m with GPS corrections and 0.80 m with multi-constellation augmentation can be achieved which indicates a significant improvement of GPS standalone results.