In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantit...In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantities associated with each fan in the network.Accordingly,each fan in a multiple-fan system has its own mine characteristic curve,or a subsystem curve.Under some consideration,the conventional concept of a mine characteristic curve of a single-fan system can be directly extended to that of a particular fan within a multiple-fan system.In this paper the mutual effect of the fans on each other and their effect on the stability of the ventilation network were investigated by Hardy Cross algorithm combined with a switching-parameters technique.To show the validity and reliability of this algorithm,the stability of the ventilation system of Abu-Tartur Mine(one of the largest underground mine in Egypt)has been studied.展开更多
A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in severa...A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.展开更多
The paper discusses geometrical characteristics and strength parameters of fan blades equipped with replaceable active part it end ended to improve the fan adjustability owing to replacement or removal of the active p...The paper discusses geometrical characteristics and strength parameters of fan blades equipped with replaceable active part it end ended to improve the fan adjustability owing to replacement or removal of the active part, which allows the fan to maintain a wide range of ventilation modes.展开更多
Mines are continually expanding in size and depth,leading to an increased reliance on localised subsurface ventilation systems.The use of underground auxiliary fans is a favoured method to increase and control airflow...Mines are continually expanding in size and depth,leading to an increased reliance on localised subsurface ventilation systems.The use of underground auxiliary fans is a favoured method to increase and control airflow in working areas.However,the effectiveness of auxiliary fans in this regard is not clear.This paper evaluated the performance of these underground fan systems in four different South African deeplevel gold mines.A total auxiliary fan system efficiency of 5%was found across six systems,with the average fan efficiency of 33 fans at 38%.The results showed that these fans deviate significantly from their design operating points.Therefore,there are significant shortcomings in current underground fan practices.Our detailed investigations led to the conclusion that the assemblage of underground auxiliary fan systems results in significant energy inefficiencies.Therefore,maintaining good underground fan practice such as optimal fan selection,ducting design and maintenance is crucial for the efficacy of a mine ventilation network.展开更多
Based on the experimental data by a full scale test model and the relevant existing achievements, four new concepts of group dust scrubbers were designed in the paper. The new dust scrubbers consist of two to four com...Based on the experimental data by a full scale test model and the relevant existing achievements, four new concepts of group dust scrubbers were designed in the paper. The new dust scrubbers consist of two to four common dust separators in series: wet fan, wet Venturi and foam filter bed. Wetting and foaming agents are used to increase the efficiency of dust separation. High efficiency is not required for each part of the group dust scrubbers, but the whole system has a high working reliability. All parts of the group dust scrubbers have the most suitable separating efficiency for different size and concentration of dust particles in airflow, according to their technical features. Four group dust scrubbers have a high efficiency from 94.4% to 99.7% for separating respirable dust at a rational cost.展开更多
文摘In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantities associated with each fan in the network.Accordingly,each fan in a multiple-fan system has its own mine characteristic curve,or a subsystem curve.Under some consideration,the conventional concept of a mine characteristic curve of a single-fan system can be directly extended to that of a particular fan within a multiple-fan system.In this paper the mutual effect of the fans on each other and their effect on the stability of the ventilation network were investigated by Hardy Cross algorithm combined with a switching-parameters technique.To show the validity and reliability of this algorithm,the stability of the ventilation system of Abu-Tartur Mine(one of the largest underground mine in Egypt)has been studied.
基金Supported by National Institute for Occupational Safety and Health (NIOSH) of USA(200-2009-30328)
文摘A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.
文摘The paper discusses geometrical characteristics and strength parameters of fan blades equipped with replaceable active part it end ended to improve the fan adjustability owing to replacement or removal of the active part, which allows the fan to maintain a wide range of ventilation modes.
基金ETA Operations (Pty) Ltd funded this research work
文摘Mines are continually expanding in size and depth,leading to an increased reliance on localised subsurface ventilation systems.The use of underground auxiliary fans is a favoured method to increase and control airflow in working areas.However,the effectiveness of auxiliary fans in this regard is not clear.This paper evaluated the performance of these underground fan systems in four different South African deeplevel gold mines.A total auxiliary fan system efficiency of 5%was found across six systems,with the average fan efficiency of 33 fans at 38%.The results showed that these fans deviate significantly from their design operating points.Therefore,there are significant shortcomings in current underground fan practices.Our detailed investigations led to the conclusion that the assemblage of underground auxiliary fan systems results in significant energy inefficiencies.Therefore,maintaining good underground fan practice such as optimal fan selection,ducting design and maintenance is crucial for the efficacy of a mine ventilation network.
基金FoundationofChinaScholarshipCouncilforAbroad! (No .975 14 0 0 8)
文摘Based on the experimental data by a full scale test model and the relevant existing achievements, four new concepts of group dust scrubbers were designed in the paper. The new dust scrubbers consist of two to four common dust separators in series: wet fan, wet Venturi and foam filter bed. Wetting and foaming agents are used to increase the efficiency of dust separation. High efficiency is not required for each part of the group dust scrubbers, but the whole system has a high working reliability. All parts of the group dust scrubbers have the most suitable separating efficiency for different size and concentration of dust particles in airflow, according to their technical features. Four group dust scrubbers have a high efficiency from 94.4% to 99.7% for separating respirable dust at a rational cost.