Natural gas hydrates(NGHs)are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency,cleanness,and large amounts of resources.The NGHs reservoirs in the South ...Natural gas hydrates(NGHs)are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency,cleanness,and large amounts of resources.The NGHs reservoirs in the South China Sea(SCS)mainly consist of clayey silts.NGHs reservoirs of this type boast the largest distribution range and the highest percentage of resources among NGHs reservoirs in the world.However,they are more difficult to exploit than sandy reservoirs.The China Geological Survey successfully carried out two NGHs production tests in the Shenhu Area in the northern SCS in 2017 and 2020,setting multiple world records,such as the longest gas production time,the highest total gas production,and the highest average daily gas production,as well as achieving a series of innovative theoretical results.As suggested by the in-depth research on the two production tests,key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization,hydrate phase transition,multiphase seepage and permeability enhancement,and the simulation and regulation of production capacity,among which the hydrate phase transition and seepage mechanism are crucial.Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature,is prone to produce secondary hydrates in the reservoirs,and is a complex process under the combined effects of the seepage,stress,temperature,and chemical fields.The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs,the hydrate phase transition,and exploitation methods and is characterized by strong methane adsorption,abrupt changes in absolute permeability,and the weak flow capacity of gas.To ensure the long-term,stable,and efficient NGHs exploitation in the SCS,it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation.With the constant progress in the NGHs industrialization,great efforts should be made to tackle the difficulties,such as determining the micro-change in temperature and pressure,the response mechanisms of material-energy exchange,the methods for efficient NGHs dissociation,and the boundary conditions for the formation of secondary hydrates in the large-scale,long-term gas production.展开更多
Charge density wave(CDW)strongly affects the electronic properties of two-dimensional(2D)materials and can be tuned by phase engineering.Among 2D transitional metal dichalcogenides(TMDs),VTe_(2)was predicted to requir...Charge density wave(CDW)strongly affects the electronic properties of two-dimensional(2D)materials and can be tuned by phase engineering.Among 2D transitional metal dichalcogenides(TMDs),VTe_(2)was predicted to require small energy for its phase transition and shows unexpected CDW states in its T-phase.However,the CDW state of H-VTe_(2)has been barely reported.Here,we investigate the CDW states in monolayer(ML)H-VTe_(2),induced by phase-engineering from T-phase VTe_(2).The phase transition between T-and H-VTe_(2)is revealed with x-ray photoelectron spectroscopy(XPS)and scanning transmission electron microscopy(STEM)measurements.For H-VTe_(2),scanning tunneling microscope(STM)and low-energy electron diffraction(LEED)results show a robust 2√3×2√3CDW superlattice with a transition temperature above 450 K.Our findings provide a promising way for manipulating the CDWs in 2D materials and show great potential in its application of nanoelectronics.展开更多
Two-dimensional(2D) transition metal dichalcogenides(TMDs) have gained much attention in virtue of their various atomic configurations and band structures.Apart from those thermodynamically stable phases, plenty of me...Two-dimensional(2D) transition metal dichalcogenides(TMDs) have gained much attention in virtue of their various atomic configurations and band structures.Apart from those thermodynamically stable phases, plenty of metastable phases exhibit interesting properties. To obtain 2D TMDs with specific phases, it is important to develop phase engineering strategies including phase transition and phaseselective synthesis. Phase transition is a conventional method to transform one phase to another, while phase-selective synthesis means the direct fabrication of the target phases for2D TMDs. In this review, we introduce the structures and stability of 2D TMDs with different phases. Then, we summarize the detailed processes and mechanism of the traditional phase transition strategies. Moreover, in view of the increasing demand of high-phase purity TMDs, we present the advanced phase-selective synthesis strategies. Finally, we underline the challenges and outlooks of phase engineering of 2D TMDs in two aspects-high phase purity and excellent controllability. This review may promote the development of controllable phase engineering for 2D TMDs and even other2D materials toward both fundamental studies and practical applications.展开更多
As the crystal quality and phase structure of two-dimensional(2D)transition metal dichalcogenides(TMDs)have significant impacts on their properties such as electroconductivity,superconductivity and chemical stability,...As the crystal quality and phase structure of two-dimensional(2D)transition metal dichalcogenides(TMDs)have significant impacts on their properties such as electroconductivity,superconductivity and chemical stability,the precise synthesis,which plays an important role in fundamental researches and industrial applications,is highly required.Group VI TMDs,such as MoS_(2),usually exhibit diverse polymorphs including semiconducting 1H and metallic 1T phases.Even great efforts are devoted to revealing the structure-dependent physicochemical nature of TMDs by modulating their phases from the stable to the metastable at the atomic scale,there are still challenges on the phase-controlled synthesis of Group VI TMDs with metallic or semimetal properties.In this review,methods such as ion intercalation,chemical doping,strain engineering,defect triggering,and electric-field treatment are examined in detail.Finally,challenges and opportunities in this research field are proposed.展开更多
The present review aims to highlight the applications of thermoresponsive polymers.Thermo-responsive polymers show a sharp change in properties upon a small or modest change in temperature.This behaviour can be utiliz...The present review aims to highlight the applications of thermoresponsive polymers.Thermo-responsive polymers show a sharp change in properties upon a small or modest change in temperature.This behaviour can be utilized for the preparation of so-called‘smart’drug delivery systems,which mimic biological response behaviour to a certain extent.Such materials are used in the development of several applications,such as drug delivery systems,tissue engineering scaffolds and gene delivery.Advances in this field are particularly relevant to applications in the areas of regenerative medicine and drug delivery.This review addresses summary of the main applications of thermoresponsive polymers which are categorized based on their 3-dimensional structure;hydrogels,interpenetrating networks,micelles,films and particles.The physico-chemical behaviour underlying the phase transition is also discussed in brief.展开更多
Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and aft...Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and after removing adsorbed oleylamine molecules(OAs)intro-duced from its synthesis are evaluat-ed by high-resolution transmission electron microscopy(HR-TEM),X-ray diffraction(XRD),underpoten-tial deposition of Pb(Pb-upd)and cyclic voltammetry.Different methods,i.e.acetic acid cleaning,electrochemical oxidation cleaning,and diethylamine replacement,have been tried to remove the adsorbed OAs.For all methods,upon the removal of the adsorbed OAs,the morphology of 4H gold nanoparticles is found to gradually change from nanowires to large dumbbell-shaped nanoparticles,accompanying with a transition from the 4H phase to the face-centered cubic phase.On the other hand,the Pb-upd results show that the sample sur-faces have almost the same facet composition before and after removal of the adsorbed OAs.After electrochemical cleaning with continuous potential scans up to 1.3 V,CO electro-oxida-tion activity of the 4H Au sample is significantly improved.The CO electro-oxidation activi-ty is compared with results on the three basel Au single crystalline surfaces reported in the lit-erature,possible origins for its enhancement are discussed.展开更多
Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req...Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.展开更多
Monolayer transition metal dichalcogenides(TMDCs) with the 1 T0 structure are a new class of large-gap two-dimensional(2 D) topological insulators, hosting topologically protected conduction channels on the edges. How...Monolayer transition metal dichalcogenides(TMDCs) with the 1 T0 structure are a new class of large-gap two-dimensional(2 D) topological insulators, hosting topologically protected conduction channels on the edges. However, the 1 T0 phase is metastable compared to the 2 H phase for most of 2 D TMDCs, among which the 1 T0 phase is least favored in monolayer MoS2. Here we report a clean and controllable technique to locally induce nanometer-sized 1 T0 phase in monolayer 2 H-MoS2 via a weak Argon-plasma treatment,resulting in topological phase boundaries of high density. We found that the stabilization of 1 T0 phase arises from the concerted effects of S vacancies and the tensile strain. Scanning tunneling spectroscopy(STS) clearly reveals a spin-orbit band gap(~60 meV) and topologically protected in-gap states residing at the 1 T0-2 H phase boundary, which are corroborated by density-functional theory(DFT) calculations.The strategy developed in this work can be generalized to a large variety of TMDCs materials, with potentials to realize scalable electronics and spintronics with low dissipation.展开更多
Lead-free bismuth sodium titanate(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)and related solid solutions are potential piezoelectric materials for such applications as actuators and transducers if their excellent strain responses a...Lead-free bismuth sodium titanate(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)and related solid solutions are potential piezoelectric materials for such applications as actuators and transducers if their excellent strain responses and piezoelectric properties can be optimized.In this work,a large strain response of 0.61%is achieved in lead-free(0.94-x%)(Bi_(0.5)Na_(0.5))TiO_(3)-0.06BaTiO_(3)-x%NaNbO_(3)(x=0 e6,BNT-6BT-xNN)ceramics with the composition of x=3.5 in a pseudo-cubic structure.Coexistence of ferroelectric(FE)and relaxor(RE)domain structures is observed in all the unpoled ceramics and the enhanced strain response is believed to be related to the evolution of the ergodic relaxor(ER)and non-ergodic(NR)states thanks to the substitution of antiferroelectric NN.BNT-6BT-3.5NN is a critical composition near the FE/NR/ER phase boundary close to room temperature(RT)and its high strain response arises from a synergistic combination of a reversible electric-field-induced phase transition and an active domain switching in the mixed NR/ER state.This work provides new insights into the dynamic interplay between mesoscopic domains and macroscopic electrical properties in the BNT-based piezoceramics.展开更多
The potential application of monolayer MS2(M?Mo,W)as thermoelectric material has been widely studied since the first report of successful fabrication.However,their performances are hindered by the considerable band ga...The potential application of monolayer MS2(M?Mo,W)as thermoelectric material has been widely studied since the first report of successful fabrication.However,their performances are hindered by the considerable band gap and the large lattice thermal conductivity in the pristine 2H phase.Recent discoveries of polymorphism in MS2s provide new opportunities for materials engineering.In this work,phonon and electron transport properties of both 2H and 1T0 phases were investigated by first-principle calculations.It is found that upon the phase transition from 2H to 1T0 in MS2,the electron transport is greatly enhanced,while the lattice thermal conductivity is reduced by several times.These features lead to a significant enhancement of power factor by one order of magnitude in MoS2 and by three times in WS2.Meanwhile,the figure of merit can reach up to 0.33 for 1T0eMoS2 and 0.68 for 1T0eWS2 at low temperature.These findings indicate that monolayer MS2 in the 1T0 phase can be promising materials for thermoelectric devices application.Meanwhile,this work demonstrates that phase engineering techniques can bring in one important control parameter in materials design.展开更多
Hydrogen(H2)is considered to be a promising substitute for fossil fuels.Two-dimensional(2D)nanomaterials have exhibited an efficient electrocatalytic capacity to catalyze hydrogen evolution reaction(HER).Particularly,...Hydrogen(H2)is considered to be a promising substitute for fossil fuels.Two-dimensional(2D)nanomaterials have exhibited an efficient electrocatalytic capacity to catalyze hydrogen evolution reaction(HER).Particularly,phase engineering of 2D nanomaterials is opening a novel research direction to endow 2D nanostructures with fascinating properties for deep applications in catalyzing HER.In this review,we briefly summarize the research progress and present the current challenges on phase engineering of 2D nanomaterials for their applications in electrocatalytic HER.Our summary will be of significance to provide fundamental understanding for designing novel 2D nanomaterials with unconventional phases to electrochemically catalyze HER.展开更多
Interphase strain engineering provides a unique methodology to significantly modify the lattice structure across a single film,enabling the emergence and manipulation of novel functionalities that are inaccessible in ...Interphase strain engineering provides a unique methodology to significantly modify the lattice structure across a single film,enabling the emergence and manipulation of novel functionalities that are inaccessible in the context of traditional strain engineering methods.In this work,by using the interphase strain,we achieve a ferromagnetic state with enhanced Curie temperature and a room-temperature polar state in EuO secondary phase-tunned EuTiO_(3) thin films.A combination of atomic-scale electron microscopy and synchrotron X-ray spectroscopy unravels the underlying mechanisms of the ferroelectric and ferromagnetic properties enhancement.Wherein,the EuO secondary phase is found to be able to dramatically distort the TiO_6 octahedra,which favors the non-centrosymmetric polar state,weakens antiferromagnetic Eu-Ti-Eu interactions,and enhances ferromagnetic Eu-O-Eu interactions.Our work demonstrates the feasibility and effectiveness of interphase strain engineering in simultaneously promoting ferroelectric and ferromagnetic performance,which would provide new thinking on the property regulation of numerous strongly correlated functional materials.展开更多
基金funded by a key project of the National Natural Science Foundation of China entitled“Multi-Field Spatio-Temporal Evolutionary Pattern of Hydrate Phase Transition and Seepage of NGHs Reservoirs”(51991365)。
文摘Natural gas hydrates(NGHs)are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency,cleanness,and large amounts of resources.The NGHs reservoirs in the South China Sea(SCS)mainly consist of clayey silts.NGHs reservoirs of this type boast the largest distribution range and the highest percentage of resources among NGHs reservoirs in the world.However,they are more difficult to exploit than sandy reservoirs.The China Geological Survey successfully carried out two NGHs production tests in the Shenhu Area in the northern SCS in 2017 and 2020,setting multiple world records,such as the longest gas production time,the highest total gas production,and the highest average daily gas production,as well as achieving a series of innovative theoretical results.As suggested by the in-depth research on the two production tests,key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization,hydrate phase transition,multiphase seepage and permeability enhancement,and the simulation and regulation of production capacity,among which the hydrate phase transition and seepage mechanism are crucial.Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature,is prone to produce secondary hydrates in the reservoirs,and is a complex process under the combined effects of the seepage,stress,temperature,and chemical fields.The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs,the hydrate phase transition,and exploitation methods and is characterized by strong methane adsorption,abrupt changes in absolute permeability,and the weak flow capacity of gas.To ensure the long-term,stable,and efficient NGHs exploitation in the SCS,it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation.With the constant progress in the NGHs industrialization,great efforts should be made to tackle the difficulties,such as determining the micro-change in temperature and pressure,the response mechanisms of material-energy exchange,the methods for efficient NGHs dissociation,and the boundary conditions for the formation of secondary hydrates in the large-scale,long-term gas production.
基金the National Key Research and Development Program of China(Grant Nos.2021YFA1400100,2020YFA0308800,and 2019YFA0308000)the National Natural Science Foundation of China(Grant Nos.92163206,62171035,62171035,61901038,61971035,61725107,and 61674171)+1 种基金the Beijing Nova Program from Beijing Municipal Science&Technology Commission(Grant No.Z211100002121072)the Beijing Natural Science Foundation(Grant Nos.Z190006 and 4192054)。
文摘Charge density wave(CDW)strongly affects the electronic properties of two-dimensional(2D)materials and can be tuned by phase engineering.Among 2D transitional metal dichalcogenides(TMDs),VTe_(2)was predicted to require small energy for its phase transition and shows unexpected CDW states in its T-phase.However,the CDW state of H-VTe_(2)has been barely reported.Here,we investigate the CDW states in monolayer(ML)H-VTe_(2),induced by phase-engineering from T-phase VTe_(2).The phase transition between T-and H-VTe_(2)is revealed with x-ray photoelectron spectroscopy(XPS)and scanning transmission electron microscopy(STEM)measurements.For H-VTe_(2),scanning tunneling microscope(STM)and low-energy electron diffraction(LEED)results show a robust 2√3×2√3CDW superlattice with a transition temperature above 450 K.Our findings provide a promising way for manipulating the CDWs in 2D materials and show great potential in its application of nanoelectronics.
基金supported by the National Natural Science Foundation of China (21673161 and 21473124)the Science and Technology Department of Hubei Province (2017AAA114)the Sino-German Center for Research Promotion (1400)
文摘Two-dimensional(2D) transition metal dichalcogenides(TMDs) have gained much attention in virtue of their various atomic configurations and band structures.Apart from those thermodynamically stable phases, plenty of metastable phases exhibit interesting properties. To obtain 2D TMDs with specific phases, it is important to develop phase engineering strategies including phase transition and phaseselective synthesis. Phase transition is a conventional method to transform one phase to another, while phase-selective synthesis means the direct fabrication of the target phases for2D TMDs. In this review, we introduce the structures and stability of 2D TMDs with different phases. Then, we summarize the detailed processes and mechanism of the traditional phase transition strategies. Moreover, in view of the increasing demand of high-phase purity TMDs, we present the advanced phase-selective synthesis strategies. Finally, we underline the challenges and outlooks of phase engineering of 2D TMDs in two aspects-high phase purity and excellent controllability. This review may promote the development of controllable phase engineering for 2D TMDs and even other2D materials toward both fundamental studies and practical applications.
基金the National Key R&D Program of China(Grant 2018YFA0306900)National Natural Science Foundation of China(Grant 51872012).
文摘As the crystal quality and phase structure of two-dimensional(2D)transition metal dichalcogenides(TMDs)have significant impacts on their properties such as electroconductivity,superconductivity and chemical stability,the precise synthesis,which plays an important role in fundamental researches and industrial applications,is highly required.Group VI TMDs,such as MoS_(2),usually exhibit diverse polymorphs including semiconducting 1H and metallic 1T phases.Even great efforts are devoted to revealing the structure-dependent physicochemical nature of TMDs by modulating their phases from the stable to the metastable at the atomic scale,there are still challenges on the phase-controlled synthesis of Group VI TMDs with metallic or semimetal properties.In this review,methods such as ion intercalation,chemical doping,strain engineering,defect triggering,and electric-field treatment are examined in detail.Finally,challenges and opportunities in this research field are proposed.
文摘The present review aims to highlight the applications of thermoresponsive polymers.Thermo-responsive polymers show a sharp change in properties upon a small or modest change in temperature.This behaviour can be utilized for the preparation of so-called‘smart’drug delivery systems,which mimic biological response behaviour to a certain extent.Such materials are used in the development of several applications,such as drug delivery systems,tissue engineering scaffolds and gene delivery.Advances in this field are particularly relevant to applications in the areas of regenerative medicine and drug delivery.This review addresses summary of the main applications of thermoresponsive polymers which are categorized based on their 3-dimensional structure;hydrogels,interpenetrating networks,micelles,films and particles.The physico-chemical behaviour underlying the phase transition is also discussed in brief.
基金supported by the National Natural Science Foundation of China(No.22172151 and 21972131).
文摘Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and after removing adsorbed oleylamine molecules(OAs)intro-duced from its synthesis are evaluat-ed by high-resolution transmission electron microscopy(HR-TEM),X-ray diffraction(XRD),underpoten-tial deposition of Pb(Pb-upd)and cyclic voltammetry.Different methods,i.e.acetic acid cleaning,electrochemical oxidation cleaning,and diethylamine replacement,have been tried to remove the adsorbed OAs.For all methods,upon the removal of the adsorbed OAs,the morphology of 4H gold nanoparticles is found to gradually change from nanowires to large dumbbell-shaped nanoparticles,accompanying with a transition from the 4H phase to the face-centered cubic phase.On the other hand,the Pb-upd results show that the sample sur-faces have almost the same facet composition before and after removal of the adsorbed OAs.After electrochemical cleaning with continuous potential scans up to 1.3 V,CO electro-oxida-tion activity of the 4H Au sample is significantly improved.The CO electro-oxidation activi-ty is compared with results on the three basel Au single crystalline surfaces reported in the lit-erature,possible origins for its enhancement are discussed.
基金support from the National Natural Science Foundation of China(No.22175079)support from the National Natural Science Foundation of China(No.22205087)+2 种基金the Open Project Program of Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Jiangxi University of Science and Technology(No.20212BCD42018)National Natural Science Foundation of China(No.22275075)Natural Science Foundation of Jiangxi Province(Nos.20204BCJ22015 and 20202ACBL203001).
文摘Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.
基金financially supported by the National Natural Science Foundation of China (11888101, 11634001, 11834017 and 61888102)the National Key R&D Program (2016YFA0300901 and 2017YFA0205003)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB28000000 and XDB30000000)Beijing Municipal Science & Technology Commissionsupport from National Science Fund for Distinguished Young Scholars (21725302)Cheung Kong Young Scholar Program
文摘Monolayer transition metal dichalcogenides(TMDCs) with the 1 T0 structure are a new class of large-gap two-dimensional(2 D) topological insulators, hosting topologically protected conduction channels on the edges. However, the 1 T0 phase is metastable compared to the 2 H phase for most of 2 D TMDCs, among which the 1 T0 phase is least favored in monolayer MoS2. Here we report a clean and controllable technique to locally induce nanometer-sized 1 T0 phase in monolayer 2 H-MoS2 via a weak Argon-plasma treatment,resulting in topological phase boundaries of high density. We found that the stabilization of 1 T0 phase arises from the concerted effects of S vacancies and the tensile strain. Scanning tunneling spectroscopy(STS) clearly reveals a spin-orbit band gap(~60 meV) and topologically protected in-gap states residing at the 1 T0-2 H phase boundary, which are corroborated by density-functional theory(DFT) calculations.The strategy developed in this work can be generalized to a large variety of TMDCs materials, with potentials to realize scalable electronics and spintronics with low dissipation.
基金supported by the Natural Science Foundation of China(Grant No.51902246,12161141012,and 12174299)the China National Key R&D Program(Grant No.2021YFB3201800 and 2020YFC0122100)+5 种基金the Natural Science Fundamental Research Project of Shaanxi Province of China(No.2019JQ590)the Key R&D Program of Shaanxi Province of China(2020GY-271)the Fundamental Research Funds for the Central Universities(xzd012020059)the“111 Project”of China(B14040)the Natural Sciences&Engineering Research Council of Canada(NSERC,Discovery Grant No.RGPIN-2017-06915)Xijiang Innovation Team Introduction Program of Zhaoqing(Jiecheng).
文摘Lead-free bismuth sodium titanate(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)and related solid solutions are potential piezoelectric materials for such applications as actuators and transducers if their excellent strain responses and piezoelectric properties can be optimized.In this work,a large strain response of 0.61%is achieved in lead-free(0.94-x%)(Bi_(0.5)Na_(0.5))TiO_(3)-0.06BaTiO_(3)-x%NaNbO_(3)(x=0 e6,BNT-6BT-xNN)ceramics with the composition of x=3.5 in a pseudo-cubic structure.Coexistence of ferroelectric(FE)and relaxor(RE)domain structures is observed in all the unpoled ceramics and the enhanced strain response is believed to be related to the evolution of the ergodic relaxor(ER)and non-ergodic(NR)states thanks to the substitution of antiferroelectric NN.BNT-6BT-3.5NN is a critical composition near the FE/NR/ER phase boundary close to room temperature(RT)and its high strain response arises from a synergistic combination of a reversible electric-field-induced phase transition and an active domain switching in the mixed NR/ER state.This work provides new insights into the dynamic interplay between mesoscopic domains and macroscopic electrical properties in the BNT-based piezoceramics.
基金the Jiangsu provincial natural science funding Project(No.BK20160308)the NSF of Heilongjiang Province of China under Grants No.QC2015001.
文摘The potential application of monolayer MS2(M?Mo,W)as thermoelectric material has been widely studied since the first report of successful fabrication.However,their performances are hindered by the considerable band gap and the large lattice thermal conductivity in the pristine 2H phase.Recent discoveries of polymorphism in MS2s provide new opportunities for materials engineering.In this work,phonon and electron transport properties of both 2H and 1T0 phases were investigated by first-principle calculations.It is found that upon the phase transition from 2H to 1T0 in MS2,the electron transport is greatly enhanced,while the lattice thermal conductivity is reduced by several times.These features lead to a significant enhancement of power factor by one order of magnitude in MoS2 and by three times in WS2.Meanwhile,the figure of merit can reach up to 0.33 for 1T0eMoS2 and 0.68 for 1T0eWS2 at low temperature.These findings indicate that monolayer MS2 in the 1T0 phase can be promising materials for thermoelectric devices application.Meanwhile,this work demonstrates that phase engineering techniques can bring in one important control parameter in materials design.
基金financially supported by the Key Grant for Special Professors in Jiangsu Province(No.RK030STP18001)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY218150)“1311 Talents Program”of Nanjing University of Posts and Telecommunications and the National Postdoctoral Program for Innovative Talents(No.BX20190156)。
文摘Hydrogen(H2)is considered to be a promising substitute for fossil fuels.Two-dimensional(2D)nanomaterials have exhibited an efficient electrocatalytic capacity to catalyze hydrogen evolution reaction(HER).Particularly,phase engineering of 2D nanomaterials is opening a novel research direction to endow 2D nanostructures with fascinating properties for deep applications in catalyzing HER.In this review,we briefly summarize the research progress and present the current challenges on phase engineering of 2D nanomaterials for their applications in electrocatalytic HER.Our summary will be of significance to provide fundamental understanding for designing novel 2D nanomaterials with unconventional phases to electrochemically catalyze HER.
基金supported by the National Key Basic Research Program of China(Nos.2020YFA0309100 and 2019YFA0308500)the National Natural Science Foundation of China(Nos.21825102,22001014,11294029,11974390,11721404)+6 种基金the China National Postdoctoral Program for Innovative Talents(No.BX20200043)China Postdoctoral Science Foundation(No.2021M690366)the Beijing Nova Program of Science and Technology(No.Z191100001119112)the Beijing Natural Science Foundation(No.2202060)the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology,the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(No.XDB33030200)the Fundamental Research Funds for the Central Universities,China(Nos.06500145 and FRF-IDRY-20–039)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KF202110)。
文摘Interphase strain engineering provides a unique methodology to significantly modify the lattice structure across a single film,enabling the emergence and manipulation of novel functionalities that are inaccessible in the context of traditional strain engineering methods.In this work,by using the interphase strain,we achieve a ferromagnetic state with enhanced Curie temperature and a room-temperature polar state in EuO secondary phase-tunned EuTiO_(3) thin films.A combination of atomic-scale electron microscopy and synchrotron X-ray spectroscopy unravels the underlying mechanisms of the ferroelectric and ferromagnetic properties enhancement.Wherein,the EuO secondary phase is found to be able to dramatically distort the TiO_6 octahedra,which favors the non-centrosymmetric polar state,weakens antiferromagnetic Eu-Ti-Eu interactions,and enhances ferromagnetic Eu-O-Eu interactions.Our work demonstrates the feasibility and effectiveness of interphase strain engineering in simultaneously promoting ferroelectric and ferromagnetic performance,which would provide new thinking on the property regulation of numerous strongly correlated functional materials.