期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Field test of high-power microwave-assisted mechanical excavation for deep hard iron ore 被引量:1
1
作者 Feng Lin Xia-Ting Feng +5 位作者 Shiping Li Xiao Hai Jiuyu Zhang Xiangxin Su Tianyang Tong Jianchun Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1922-1935,共14页
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re... Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used. 展开更多
关键词 Microwave parameters High power Field experiment Mechanical mining
下载PDF
Innovation and future of mining rock mechanics 被引量:41
2
作者 Manchao He Qi Wang Qunying Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期1-21,共21页
The 121 mining method of longwall mining first proposed in England has been widely used around the world.This method requires excavation of two mining roadways and reservation of one coal pillar to mine one working fa... The 121 mining method of longwall mining first proposed in England has been widely used around the world.This method requires excavation of two mining roadways and reservation of one coal pillar to mine one working face.Due to considerable excavation of roadway,the mining roadway is generally destroyed during coal mining.The stress concentration in the coal pillar can cause large deformation of surrounding rocks,rockbursts and other disasters,and subsequently a large volume of coal pillar resources will be wasted.To improve the coal recovery rate and reduce excavation of the mining roadway,the 111 mining method of longwall mining was proposed in the former Soviet Union based on the 121 mining method.The 111 mining method requires excavation of one mining roadway and setting one filling body to replace the coal pillar while maintaining another mining roadway to mine one working face.However,because the stress transfer structure of roadway and working face roof has not changed,the problem of stress concentration in the surrounding rocks of roadway has not been well solved.To solve the above problems,the conventional concept utilizing high-strength support to resist the mining pressure for the 121 and 111 mining methods should be updated.The idea is to utilize mining pressure and expansion characteristics of the collapsed rock mass in the goaf to automatically form roadways,avoiding roadway excavation and waste of coal pillar.Based on the basic principles of mining rock mechanics,the“equilibrium mining”theory and the“short cantilever beam”mechanical model are proposed.Key technologies,such as roof directional presplitting technology,negative Poisson’s ratio(NPR)high-prestress constant-resistance support technology,and gangue blocking support technology,are developed following the“equilibrium mining”theory.Accordingly,the 110 and N00 mining methods of an automatically formed roadway(AFR)by roof cutting and pressure releasing without pillars are proposed.The mining methods have been applied to a large number of coal mines with different overburdens,coal seam thicknesses,roof types and gases in China,realizing the integrated mode of coal mining and roadway retaining.On this basis,in view of the complex geological conditions and intelligent mining demand of coal mines,an intelligent and unmanned development direction of the“equilibrium mining”method is prospected. 展开更多
关键词 mining rock mechanics Equilibrium mining theory Short cantilever beam model Automatically formed roadway without PILLARS Intelligent mining
下载PDF
Development and prospect on fully mechanized mining in Chinese coal mines 被引量:103
3
作者 Jinhua Wang 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期253-260,共8页
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de... Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward. 展开更多
关键词 Fully mechanized mining mining with large shear height Fully mechanized top coal caving Steeply inclined seam Back filling mining PROSPECT
下载PDF
Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine 被引量:14
4
作者 张强 张吉雄 +2 位作者 康涛 孙强 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1965-1972,共8页
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr... Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM. 展开更多
关键词 fully mechanized solid backfill mining(FMSBM) strata movement strata behavior mining pressure monitoring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部