Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining. This paper investigates the strategy of mining options for an orebody using a Mixed Intege...Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining. This paper investigates the strategy of mining options for an orebody using a Mixed Integer Linear Programming(MILP) optimization framework. The MILP formulation maximizes the Net Present Value(NPV) of the reserve when extracted with(i) open pit mining,(ii) underground mining, and(iii) concurrent open pit and underground mining. Comparatively, implementing open pit mining generates a higher NPV than underground mining. However considering the investment required for these mining options, underground mining generates a better return on investment than open pit mining. Also, in the concurrent open pit and underground mining scenario, the optimizer prefers extracting blocks using open pit mining. Although the underground mine could access ore sooner, the mining cost differential for open pit mining is more than compensated for by the discounting benefits associated with earlier underground mining.展开更多
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research metho...Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.展开更多
基金funding support provided by the Laurentian University Research Fund for the compilation of this report
文摘Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining. This paper investigates the strategy of mining options for an orebody using a Mixed Integer Linear Programming(MILP) optimization framework. The MILP formulation maximizes the Net Present Value(NPV) of the reserve when extracted with(i) open pit mining,(ii) underground mining, and(iii) concurrent open pit and underground mining. Comparatively, implementing open pit mining generates a higher NPV than underground mining. However considering the investment required for these mining options, underground mining generates a better return on investment than open pit mining. Also, in the concurrent open pit and underground mining scenario, the optimizer prefers extracting blocks using open pit mining. Although the underground mine could access ore sooner, the mining cost differential for open pit mining is more than compensated for by the discounting benefits associated with earlier underground mining.
文摘Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.