A new probability function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of p...A new probability function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of prediction on horizontal mining subsidence and deformation, which gives a new method for prediction on mining subsidence and deformation.展开更多
In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and time...In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.展开更多
Subsidence analysis and prediction with measured data have been conducted and applied to local strata and mining conditions worldwide. Underground coal mines chose the most suitable analysis and prediction method for ...Subsidence analysis and prediction with measured data have been conducted and applied to local strata and mining conditions worldwide. Underground coal mines chose the most suitable analysis and prediction method for them. However, there was no study based on the measured data of subsidence induced by underground mining operation in Indonesia. This paper describes the condition of underground coal mine in Indonesia and then discusses the subsidence behavior due to longwall mining operation based on measured data in Balikpapan coal-bearing formation in Indonesia.展开更多
文摘A new probability function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of prediction on horizontal mining subsidence and deformation, which gives a new method for prediction on mining subsidence and deformation.
基金supported by the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B-141Z)the National Natural Science Foundation of China (No. 41071273)
文摘In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.
文摘Subsidence analysis and prediction with measured data have been conducted and applied to local strata and mining conditions worldwide. Underground coal mines chose the most suitable analysis and prediction method for them. However, there was no study based on the measured data of subsidence induced by underground mining operation in Indonesia. This paper describes the condition of underground coal mine in Indonesia and then discusses the subsidence behavior due to longwall mining operation based on measured data in Balikpapan coal-bearing formation in Indonesia.