期刊文献+
共找到5,532篇文章
< 1 2 250 >
每页显示 20 50 100
Mining-induced movement properties and fissure time-space evolution law in overlying strata 被引量:10
1
作者 Xu Xingliang Zhang Nong Tian Suchuan 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期817-820,共4页
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie... Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis. 展开更多
关键词 mining-induced MOVEMENT Overlying strata MOVEMENT property Evolution of FRACTURE WEDGE-SHAPED FRACTURE zone
下载PDF
Evolution mechanism and treatment timing of penetrating fissures
2
作者 ZHANG Yanjun YAN Yueguan +1 位作者 ZHU Yuanhao DAI Huayang 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3453-3473,共21页
The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and ... The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas. 展开更多
关键词 Mining subsidence Ecological restoration fissures Evolution mechanism Prediction model Treatment timing
下载PDF
Crack mechanism of ground fissures in loess layer of Fenwei Basin, China
3
作者 LI Cong LU Quanzhong +2 位作者 WANG Feiyong LUO Wenchao XU Qiang 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1683-1696,共14页
The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation... The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation. 展开更多
关键词 Ground fissure Fenwei Basin Physical model test Particle flow code Crack propagation
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
4
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures Infrared thermal imaging Unmanned aerial vehicle(UAV) COMSOL simulation
下载PDF
Fracture evolution characteristics of sandstone containing double fissures and a single circular hole under uniaxial compression 被引量:15
5
作者 Chen Minliang Jing Hongwen +3 位作者 Ma Xiujun Su Haijian Du Mingrui Zhu Tantan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期499-505,共7页
The uniaxial compression experiments on the sandstone samples containing double fissures and a single circular hole were carried out by using electro-hydraulic servo universal testing machine to investigate the effect... The uniaxial compression experiments on the sandstone samples containing double fissures and a single circular hole were carried out by using electro-hydraulic servo universal testing machine to investigate the effect of rock bridge angle β and fissure angle α on mechanical properties and evolution characteristics of cracks.The results show that the peak strength,peak strain and elastic modulus of defected specimens decrease comparing with those for intact sample,and show a decreased trend firstly and then increase with β changing from 0° to 90°.The peak strength and elastic modulus achieve the minimum value as the rock bridge angle is 60°,while the peak strain reaches the minimum value with the rock bridge angle of 45°.The crack initiation of tested rock samples occurs firstly in stress concentration areas at tips of prefabricated fissures under uniaxial compression,and then propagates constantly and coalescences with the prefabricated hole.Some secondary cracks initiate and propagate as well until buckling failure happens.The rock bridge angle has a great influence on crack initiation,coalescence,final failure mode,crack initiation stress and transfixion stress.The peak strength varies significantly,while the elastic modulus and peak strain change slightly,and the failure modes are also different due to the influence of fissure angle. 展开更多
关键词 Double fissures A single circular hole Strength characteristics Crack propagation Failure mode
下载PDF
Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression 被引量:12
6
作者 Sheng-Qi Yang Yan-Hua Huang +2 位作者 P.G.Ranjith Yu-Yong Jiao Jian Ji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第6期871-889,共19页
Based on experimental restilts of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC2D). Then, the validation of the simulated model... Based on experimental restilts of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC2D). Then, the validation of the simulated models were cross checked with the experimental results of brittle sandstone containing three parallel fissures under uniaxial compression. The simulated results agreed very well with the experimental results, including the peak strength, peak axial strain, and ultimate failure mode. Using the same micro- parameters, the numerical models containing a new geometry of three fissures are constructed to investigate the fissure angle on the fracture mechanical behavior of brittle sandstone under uniaxial compression. The strength and deformation parameters of brittle sandstone containing new three fissures are dependent to the fissure angle. With the increase of the fis- sure angle, the elastic modulus, the crack damage threshold, and the peak strength of brittle sandstone containing three fissures firstly increase and secondly decrease. But the peak axial strain is nonlinearly related to the fissure angle. In the entire process of deformation, the crack initiation and propagation behavior of brittle sandstone containing three fissures under uniaxial compression are investigated with respect to the fissure angle. Six different crack coalescence modes are identified for brittle sandstone containing three fissures under uniaxial compression. The influence of the fissure angle on the length of crack propagation and crack coalescence stress is evaluated. These investigated conclusions are very important for ensuring the stability and safety of rock engineering with intermittent structures. 展开更多
关键词 Brittle sandstone ·PFC2D Three fissures ·Crack initiation Crack propagation Crack coalescence
下载PDF
Numerical simulation of gas flow process in mining-induced crack network 被引量:14
7
作者 Zhou Hongwei Liu Jinfeng +2 位作者 Xue Dongjie Yi Haiyang Xue Junhua 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期793-799,共7页
The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehe... The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area. 展开更多
关键词 GAS flow GAS pressure PHYSICAL modeling mining-induced cracks COMSOL
下载PDF
Fault-Induced Coal Burst Mechanism under Mining-Induced Static and Dynamic Stresses 被引量:26
8
作者 Wu Cai Linming Dou +1 位作者 Guangyao Si Yawei Hu 《Engineering》 SCIE EI 2021年第5期687-700,共14页
Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coa... Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts. 展开更多
关键词 Coal burst Fault reactivation mining-induced stress Seismic-based dynamic stress Fault pillar
下载PDF
Numerical simulation of gas migration into mining-induced fracture network in the goaf 被引量:8
9
作者 Cao Jie Li Wenpu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期681-685,共5页
Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extra... Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extraction. To study gas migration in mining-induced fractures, one mining face of 10 th Mine in Pingdingshan Coalmine Group in Henan, China, has been selected as the case study for this work. By establishing the mathematical model of gas migration under the influence of coal seam mining, discrete element software UDEC and Multiphysics software COMSOL are employed to model gas migration in mining-induced fractures above the goaf. The results show that as the working face advances, the goaf overburden gradually forms a mining-induced fracture network in the shape of a trapezoid, the size of which increases with the distance of coal face advance. Compared with gas migration in the overburden matrix, the gas flow in the fracture network due to mining is far greater. The largest mining-induced fracture is located at the upper end of the trapezoidal zone, which results in the largest gas flux in the network. When drilling for gas extraction in a mining-induced fracture field, the gas concentration is reduced in the whole region during the process of gas drainage, and the rate of gas concentration drops faster in the fractured zone. It is shown that with gas drainage, the gas flow velocity in the mininginduced fracture network is faster. 展开更多
关键词 Gas migration FRACTURES mining-induced Numerical simulation
下载PDF
Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression 被引量:10
10
作者 PU Cheng-zhi CAO Ping 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期185-191,共7页
The compression test on rock-like specimens with prefabricated closed multi-fissures made by pulling out the embedded metal inserts in the precured period was done on the servo control uniaxial loading instrument. The... The compression test on rock-like specimens with prefabricated closed multi-fissures made by pulling out the embedded metal inserts in the precured period was done on the servo control uniaxial loading instrument. The influence of fissure inclination angle and distribution density on the failure characteristics of fissure bodies was researched. It was found that, the fissure inclination angle was the major influencing factor on the failure modes of fissure bodies. The different developmental states of micro-cracks would appear on specimens under different fissure inclination angles. However, the influence of fissure distribution density on the failure mode of fissure bodies was achieved by influencing the transfixion pattern of fissures. It was shown by the sliding crack model that, the effective shear, which drove the relative sliding of the fissure, was a function of fissure inclination angle and friction coefficient of the fissure surface. The strain-softening model of fissure bodies was established based on the mechanical parameters that were obtained by the test of rock-like materials under the same experimental condition. And the reliability of experimental results was identified by using this model. 展开更多
关键词 rock-like material prefabricated fissure uniaxial compression sliding crack model strain-softening model
下载PDF
Numerical simulation of spatial distributions of mining-induced stress and fracture fields for three coal mining layouts 被引量:4
11
作者 Shengwei Li Mingzhong Gao +6 位作者 Xiaojun Yang Ru Zhang Li Ren Zhaopeng Zhang Guo Li Zetian Zhang Jing Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期907-913,共7页
In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (... In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining, 展开更多
关键词 Coal mining Mining layouts mining-induced stress field mining-induced fracture field Numerical simulation
下载PDF
Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures 被引量:11
12
作者 黄彦华 杨圣奇 曾卫 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1474-1485,共12页
A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strai... A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strain curves,mechanical properties,AE events,cracking behavior and energy characteristics were analyzed to reveal the macro-mechanical behavior and meso-mechanism of pre-fissured specimens under different loading rates.Investigated results show that:1)When the loading rate is relatively low,the stress-strain curves show a brittle response.When the loading rate is relatively high,the curve shows a more ductile response.Both of the peak strength and elastic mudulus increase with the increase of loading rate,which can be expressed as power functions.2)Four crack types are identified,i.e.,tensile crack,shear crack,far-field crack and surface spalling.Moreover,the tensile crack,far-field crack and surface spalling are under tensile mechanism,while the shear crack is under shear mechanism.3)The drops of the stress-strain curves all correspond to the crack initiation or coalescence,which is also linked to a sudden increasing in the accumulated micro-crack curve.4)Both of the maximum bond force and energy have the similar trend with the increase of loading rate to peak strength,which indicates that the trend of peak strength can be explained by the meso-mechanics and energy. 展开更多
关键词 rock mechanics two pre-existing fissures strength parameters crack coalescence particle flow simulation
下载PDF
Measurements of in situ stress and mining-induced stress in Beiminghe Iron Mine of China 被引量:8
13
作者 欧阳振华 李长洪 +1 位作者 徐万才 李昊洁 《Journal of Central South University》 SCIE EI CAS 2009年第1期85-90,共6页
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole st... In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85. 展开更多
关键词 in situ stress mining-induced stress Beiminghe Iron Mine stress measurment
下载PDF
Deformation characteristics and reinforcement technology for entry subjected to mining-induced stresses 被引量:11
14
作者 Hongpu Kang Yongzheng Wu Fuqiang Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期207-219,共13页
The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the charac... The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the characteristics of deformation and failure of the entry were investigated in terms of the tempo-spatial relations between heading and working faces through field study and numerical modeling. The three-dimensional (3D) finite difference models were built to investigate stresses, displacements and damages in the surrounding rocks of the entry and the working face. The field study includes selection of reinforcing methods and materials, design parameters, and determination of cable prestress. The monitoring data of entry deformation and stress along the cables during every stage were presented. The state of the reinforced entry was evaluated based on the monitoring data. The results demonstrate that before the heading face of the entry crosses the adjacent working face, the influence of advanced abutment pressure caused by adjacent working face upon the entry is not significant. After they cross each other, however, the lateral abutment pressure will have an evident impact on the entry. The displacement rate of the entry will be greatly increased and reaches a certain value within a certain distance between the heading face and the working face. Then, it will increase again with the presence of secondary mining-induced pressure on the entry when the present working face advances. The fully-grouted cable with short length, high strength and high prestress is an effective way to reinforce the entry suffering from severe mining-induced stresses, which greatly reduces the displacement and failure possibility of the entry. Finally, the principles and recommendations for reinforcing design of entries suffering from severe mining-induced stresses were proposed according to field study, numerical modeling and experiences from other coal mines. Problems encountered in field study and suggestions for reinforcement were also discussed. 展开更多
关键词 mining engineering coal mine entry severe mining-induced stress stress distribution field study reinforcing principle
下载PDF
An experimental investigation of failure mechanical behavior in cylindrical granite specimens containing two non-coplanar open fissures under different confining pressures 被引量:7
15
作者 YANG Sheng-qi DONG Jin-peng +2 位作者 YANG Jing YANG Zhen HUANG Yan-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1578-1596,共19页
Fissures play a significant role in predicting the unstable failure of rock mass engineering.For deep rock underground engineering,rock mass containing pre-existing fissures is usually located in triaxial stress state... Fissures play a significant role in predicting the unstable failure of rock mass engineering.For deep rock underground engineering,rock mass containing pre-existing fissures is usually located in triaxial stress state.Therefore,not only pre-existing fissure but also confining pressure affects the failure mechanical behavior of rock material.In this research,the granite specimens containing two non-coplanar open fissures were investigated by a series of conventional triaxial compression tests.First,the effect of bridge angle and confining pressure on strength and deformation characteristics of granite specimens was evaluated.Results show that the triaxial compressive strength,failure axial strain,and crack damage threshold increased nonlinearly with confining pressure.Under high confining pressures,elastic modulus was insensitive to bridge angle.Then,an X-ray micro-CT scanning technique was used to analyze the internal fracture characteristics of granite specimens with respect to various bridge angles and confining pressures.Five typical crack coalescence modes were identified,namely,indirect coalescence,shear coalescence and three types of tensile coalescence.The reconstructed 3-D CT images indicated that under uniaxial or low confining pressures,the bridge angle had a significant effect on crack evolution behavior,while under high confining pressures,shear-dominated failures occurred with the development of anti-wing cracks. 展开更多
关键词 rock mechanics GRANITE three-dimensional non-coplanar open fissures X-ray micro-CT triaxial compression
下载PDF
Mechanical properties and cracking behaviors of limestone-like samples with two parallel fissures before and after grouting 被引量:4
16
作者 LE Hui-lin WEI Ji-hong +2 位作者 SUN Shao-rui WANG Wu-chao FAN Hao-tian 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2875-2889,共15页
In the present work,uniaxial compressive tests were carried out on limestone-like samples containing two parallel open fissures or cement-infilled fissures with different geometries.Mechanical property and crack behav... In the present work,uniaxial compressive tests were carried out on limestone-like samples containing two parallel open fissures or cement-infilled fissures with different geometries.Mechanical property and crack behavior of limestone-like samples with two parallel open fissures or cement-infilled fissures were affected by bridge inclination angle and fissure inclination angle.Four types of coalescence of rock bridge for samples containing open fissures or cement-infilled fissures were summarized and classified.The closure of tensile crack was observed in the samples with small fissure inclination angle.This is a new phenomenon which is not mentioned in previous studies.Test results show that the peak strength,crack initiation stress,and coalescence type are different between open fissures and cement infilled fissures.The reason for this phenomenon is that grouting of cement can transfer stress and reduce stress concentration at the flaw tip and rock bridge area. 展开更多
关键词 cement-infilled fissure crack behavior compressive strength coalescence type
下载PDF
An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression 被引量:9
17
作者 Yan-Hua Huang Sheng-Qi Yang +2 位作者 Wen-Ling Tian Wei Zeng Li-Yuan Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期442-455,共14页
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalesce... Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures. 展开更多
关键词 Rock-like material Two unparallel fissures Mechanical parameters Crack evolution Acoustic emission(AE)
下载PDF
Coupling mechanism between mining-induced deformation and permeability of coal 被引量:3
18
作者 Xue Dongjie Zhou Hongwei +1 位作者 Wang Chaosheng Li Dongping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期783-787,共5页
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th... The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit. 展开更多
关键词 mining-induced mechanical behavior Coal deformation SEEPAGE Coupling test
下载PDF
Characteristics of evolution of mining-induced stress field in the longwall panel:insights from physical modeling 被引量:7
19
作者 Jinfu Lou Fuqiang Gao +4 位作者 Jinghe Yang Yanfang Ren Jianzhong Li Xiaoqing Wang Lei Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期938-955,共18页
The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stre... The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis. 展开更多
关键词 Longwall mining mining-induced stress field Physical modeling Principal stress trajectory Strain brick
下载PDF
Mechanical behaviours of sandstone containing intersecting fissures under uniaxial compression 被引量:3
20
作者 Fei Xiong Xinrong Liu +6 位作者 Xiaohan Zhou Guangyi Lin Dongshuang Liu Yafeng Han Bin Xu Chunmei He Zijuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期460-476,共17页
Predicting rock cracking is important for assessing the stability of underground engineering.The effects of the intersecting angle a and the distribution orientation angleβof intersecting fissures on the uniaxial com... Predicting rock cracking is important for assessing the stability of underground engineering.The effects of the intersecting angle a and the distribution orientation angleβof intersecting fissures on the uniaxial compressive strength and the failure characteristics of sandstone containing intersecting fissures are investigated through laboratory experiments and two-dimensional particle flow code(PFC2D).The relationship between the mechanical properties of sandstone and the intersecting angle a and the distribution orientation angleβis analysed.Crack initiation forms and the final failure modes are then categorised and determined via empirical methods.In addition,the cracking processes of intersecting fissures with different a andβvalues are discussed.The results show that variations in the peak stress,peak strain,average modulus,and crack initiation stress of sandstone containing intersecting fissures show a“moth”shape in the space of the a-β-mechanical parameters.Two crack initiation forms are identified:inner tip cracking(usually accompanied by one outer tip cracking)and only outer tips cracking.Two failure modes are observed:(1)the main fracture planes are created at the inner tip and one outer tip,and(2)the main fracture planes are formed at the two outer tips.Two main crack evolution processes of sandstone containing intersecting fissures under uniaxial compression are found.Approaches for quickly determining the crack initiation form and the failure mode are proposed.The combination of the determination equations for the crack initiation form and the failure mode can be used to predict the crack evolution.The approach for determining the crack evolution processes is hence proposed with acceptable precision. 展开更多
关键词 Intersecting fissures SANDSTONE Uniaxial compression Fracture determination Cracking evolution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部