Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie...Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.展开更多
The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity minin...The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.展开更多
文摘Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.
基金supported by the National Natural Science Foundation of China (No.51774111)Henan province science and technology innovation outstanding talent fund of China (No.184200510003)
文摘The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.