期刊文献+
共找到2,669篇文章
< 1 2 134 >
每页显示 20 50 100
Spatial deduction of mining-induced stress redistribution using an optimized non-negative matrix factorization model
1
作者 Xu-yan Tan Weizhong Chen +1 位作者 Luyu Wang Changkun Qin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2868-2876,共9页
Investigation of mining-induced stress is essential for the safety of coal production.Although the field monitoring and numerical simulation play a significant role in obtaining the structural mechanical behaviors,the... Investigation of mining-induced stress is essential for the safety of coal production.Although the field monitoring and numerical simulation play a significant role in obtaining the structural mechanical behaviors,the range of monitoring is not sufficient due to the limits of monitoring points and the associated numerical result is not accurate.In this study,we aim to present a spatial deduction model to characterize the mining-induced stress distribution using machine learning algorithm on limited monitoring data.First,the framework of the spatial deduction model is developed on the basis of non-negative matrix factorization(NMF)algorithm and optimized by mechanical mechanism.In this framework,the spatial correlation of stress response is captured from numerical results,and the learned correlation is employed in NMF as a mechanical constrain to augment the limited monitoring data and obtain the overall mechanical performances.Then,the developed model is applied to a coal mine in Shandong,China.Experimental results show the stress distribution in one plane is derived by several monitoring points,where mining induced stress release is observed in goaf and stress concentration in coal pillar,and the intersection point between goaf and coal seam is a sensitive area.The indicators used to evaluate the property of the presented model indicate that 83%mechanical performances have been captured and the deduction accuracy is about 92.9%.Therefore,it is likely that the presented deduction model is reliable. 展开更多
关键词 Machine learning Underground construction MONITORING mining-induced stress PREDICTION
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
2
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer overburden fracture Ground fissures Infrared thermal imaging Unmanned aerial vehicle(UAV) COMSOL simulation
下载PDF
Numerical simulation of gas flow process in mining-induced crack network 被引量:14
3
作者 Zhou Hongwei Liu Jinfeng +2 位作者 Xue Dongjie Yi Haiyang Xue Junhua 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期793-799,共7页
The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehe... The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area. 展开更多
关键词 GAS flow GAS pressure PHYSICAL modeling mining-induced cracks COMSOL
下载PDF
Numerical simulation of gas migration into mining-induced fracture network in the goaf 被引量:8
4
作者 Cao Jie Li Wenpu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期681-685,共5页
Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extra... Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extraction. To study gas migration in mining-induced fractures, one mining face of 10 th Mine in Pingdingshan Coalmine Group in Henan, China, has been selected as the case study for this work. By establishing the mathematical model of gas migration under the influence of coal seam mining, discrete element software UDEC and Multiphysics software COMSOL are employed to model gas migration in mining-induced fractures above the goaf. The results show that as the working face advances, the goaf overburden gradually forms a mining-induced fracture network in the shape of a trapezoid, the size of which increases with the distance of coal face advance. Compared with gas migration in the overburden matrix, the gas flow in the fracture network due to mining is far greater. The largest mining-induced fracture is located at the upper end of the trapezoidal zone, which results in the largest gas flux in the network. When drilling for gas extraction in a mining-induced fracture field, the gas concentration is reduced in the whole region during the process of gas drainage, and the rate of gas concentration drops faster in the fractured zone. It is shown that with gas drainage, the gas flow velocity in the mininginduced fracture network is faster. 展开更多
关键词 Gas migration FRACTURES mining-induced Numerical simulation
下载PDF
Fault-Induced Coal Burst Mechanism under Mining-Induced Static and Dynamic Stresses 被引量:16
5
作者 Wu Cai Linming Dou +1 位作者 Guangyao Si Yawei Hu 《Engineering》 SCIE EI 2021年第5期687-700,共14页
Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coa... Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts. 展开更多
关键词 Coal burst Fault reactivation mining-induced stress Seismic-based dynamic stress Fault pillar
下载PDF
Mining-induced movement properties and fissure time-space evolution law in overlying strata 被引量:10
6
作者 Xu Xingliang Zhang Nong Tian Suchuan 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期817-820,共4页
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie... Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis. 展开更多
关键词 mining-induced MOVEMENT Overlying strata MOVEMENT property Evolution of FRACTURE WEDGE-SHAPED FRACTURE zone
下载PDF
Deformation characteristics and reinforcement technology for entry subjected to mining-induced stresses 被引量:11
7
作者 Hongpu Kang Yongzheng Wu Fuqiang Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期207-219,共13页
The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the charac... The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the characteristics of deformation and failure of the entry were investigated in terms of the tempo-spatial relations between heading and working faces through field study and numerical modeling. The three-dimensional (3D) finite difference models were built to investigate stresses, displacements and damages in the surrounding rocks of the entry and the working face. The field study includes selection of reinforcing methods and materials, design parameters, and determination of cable prestress. The monitoring data of entry deformation and stress along the cables during every stage were presented. The state of the reinforced entry was evaluated based on the monitoring data. The results demonstrate that before the heading face of the entry crosses the adjacent working face, the influence of advanced abutment pressure caused by adjacent working face upon the entry is not significant. After they cross each other, however, the lateral abutment pressure will have an evident impact on the entry. The displacement rate of the entry will be greatly increased and reaches a certain value within a certain distance between the heading face and the working face. Then, it will increase again with the presence of secondary mining-induced pressure on the entry when the present working face advances. The fully-grouted cable with short length, high strength and high prestress is an effective way to reinforce the entry suffering from severe mining-induced stresses, which greatly reduces the displacement and failure possibility of the entry. Finally, the principles and recommendations for reinforcing design of entries suffering from severe mining-induced stresses were proposed according to field study, numerical modeling and experiences from other coal mines. Problems encountered in field study and suggestions for reinforcement were also discussed. 展开更多
关键词 mining engineering coal mine entry severe mining-induced stress stress distribution field study reinforcing principle
下载PDF
Numerical simulation of spatial distributions of mining-induced stress and fracture fields for three coal mining layouts 被引量:3
8
作者 Shengwei Li Mingzhong Gao +6 位作者 Xiaojun Yang Ru Zhang Li Ren Zhaopeng Zhang Guo Li Zetian Zhang Jing Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期907-913,共7页
In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (... In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining, 展开更多
关键词 Coal mining Mining layouts mining-induced stress field mining-induced fracture field Numerical simulation
下载PDF
Characteristics of evolution of mining-induced stress field in the longwall panel:insights from physical modeling 被引量:7
9
作者 Jinfu Lou Fuqiang Gao +4 位作者 Jinghe Yang Yanfang Ren Jianzhong Li Xiaoqing Wang Lei Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期938-955,共18页
The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stre... The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis. 展开更多
关键词 Longwall mining mining-induced stress field Physical modeling Principal stress trajectory Strain brick
下载PDF
Coupling mechanism between mining-induced deformation and permeability of coal 被引量:3
10
作者 Xue Dongjie Zhou Hongwei +1 位作者 Wang Chaosheng Li Dongping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期783-787,共5页
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th... The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit. 展开更多
关键词 mining-induced mechanical behavior Coal deformation SEEPAGE Coupling test
下载PDF
Development of a time-dependent energy model to calculate the mining-induced stress over gates and pillars 被引量:7
11
作者 Mohammad Rezaei Mohammad Farouq Hossaini Abbas Majdi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期306-317,共12页
Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gate... Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency. 展开更多
关键词 Longwall mining Strain energy Time-dependent model Destressed zone mining-induced stress
下载PDF
A geometrically and locally adaptive remeshing method for finite difference modeling of mining-induced surface subsidence 被引量:1
12
作者 Ziyu Zhang Gang Mei Nengxiong Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期219-231,共13页
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ... Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China. 展开更多
关键词 mining-induced subsidence Numerical modeling Finite difference method(FDM) Distorted mesh Adaptive remeshing
下载PDF
Instantaneous stress release in fault surface asperities during mining-induced fault-slip 被引量:1
13
作者 Atsushi Sainoki Hani S.Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期619-628,共10页
Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studi... Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studies that intense seismic waves could be generated with the shock unloading of fault surface asperities during fault-slip. This study investigates the shock unloading with numerical simulation. A three-dimensional (3D) numerical model with idealized asperities is constructed with the help of discrete element code 3DEC. The idealization is conducted to particularly focus on simulating the shock unloading that previous numerical models, which replicate asperity degradation and crack development during the shear behavior of a joint surface in previous studies, fail to capture and simulate. With the numerical model, static and dynamic analyses are carried out to simulate unloading of asperities in the course of fault-slip. The results obtained from the dynamic analysis show that gradual stress release takes place around the center of the asperity tip at a rate of 45 MPa/ms for the base case, while an instantaneous stress release greater than 80 MPa occurs near the periphery of the asperity tip when the contact between the upper and lower asperities is lost. The instantaneous stress release becomes more intense in the vicinity of the asperity tip, causing tensile stress more than 20 MPa. It is deduced that the tensile stress could further increase if the numerical model is discretized more densely and analysis is carried out under stress conditions at a great depth. A model parametric study shows that in-situ stress state has a significant influence on the magnitude of the generated tensile stress. The results imply that the rapid stress release generating extremely high tensile stress on the asperity tip can cause intense seismic waves when it occurs at a great depth. 展开更多
关键词 Shock unloading mining-induced fault-slip Asperity Dynamic analysis
下载PDF
Determination of minimum overburden depth for underwater shield tunnel in sands:Comparison between circular and rectangular tunnels 被引量:3
14
作者 Weixin Sun Fucheng Han +4 位作者 Hanlong Liu Wengang Zhang Yanmei Zhang Weijia Su Songlin Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1671-1686,共16页
With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different ... With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation. 展开更多
关键词 Minimum overburden depth Uplift resistance mechanism Shield tunnel shape Tunnel anti-floating
下载PDF
Practice and technical approach of GPS observation of mining-induced ground subsidence
15
作者 GAO Jun-hai~(1,2) WU Li-xin~1 (1. China University of Mining and Technology Beijing Campus, Beijing 100083, China 2. Tangshan Branch, China Coal Research Institute, Tangshan 063012, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期65-68,共4页
The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtaine... The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtained. When surveying the subsidence value in the mining-induced ground subsidence, the change of the height of monitoring point is needed. On the above theoretical basis, the problem involved in GPS observation of mining-induced ground subsidence and their counter measures were discussed, and an introduction was made that the subsidence value obtained in the monitoring mining-induced ground subsidence can use the change of height of geodetic as a alternative, the result of check on the accuracy and reliability of repetitions observations was analysed. Finally, the effect of errors on accuracy of GPS observation and their reduction measures were elaborated. 展开更多
关键词 mining-induced ground SUBSIDENCE GPS OBSERVATION OBSERVATION ACCURACY reliability
下载PDF
Kinetics of solid-state reduction of chromite overburden
16
作者 Saida Shaik Zhiyuan Chen +1 位作者 Preeti Prakash Sahoo Chenna Rao Borra 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2347-2355,共9页
The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ... The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ores is a constant clinical task for industry metallurgists.Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated.This condition can be avoided by direct reduction followed by magnetic separation(to separate the high amount of gangue or refractory and metal parts)and smelting.Chromite overburden(COB)is a mine waste generated in chromite ore processing,and it mainly consists of iron,chromium,and nickel(<1wt%).In the present work,the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore(COB)were thoroughly investigated via thermal analysis.The results showed that the reduction of pellets followed a firstorder autocatalytic reaction control mechanism in the temperature range of 900-1100℃.The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB.The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction. 展开更多
关键词 chromite overburden solid-state reduction KINETICS autocatalytic reaction
下载PDF
Experimental study on the interrelation of multiple mechanical parameters in overburden rock caving process during coal mining in longwall panel
17
作者 Daixin Deng Hongwei Wang +2 位作者 Lili Xie Zeliang Wang Jiaqi Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期265-289,共25页
In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of th... In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the signifcant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identifed as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine. 展开更多
关键词 overburden rock caving Multiple mechanical parameters Interrelation characterization Precursor information
下载PDF
3D forward modeling and response characteristics of low-resistivity overburden of the CFS-PML absorbing boundary for ground-well transient electromagnetic method
18
作者 Lijuan Zhao Mingzhong Gao +3 位作者 Nengzhong Lei Hongfei Duan Weizhong Qiu Zhaoying Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1541-1550,共10页
This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of com... This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body. 展开更多
关键词 Ground-well transient electromagnetic method CFS-PML boundary condition 3D forward modeling Low-resistivity overburden
下载PDF
Geochemical and mineralogical evaluations of coal,shale,and mine waste overburden from Makum coalfield of the Northeast India
19
作者 Nilotpol Bhuyan Nazrul Islam +2 位作者 Monikankana Saikia James CHower Binoy K.Saikia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期41-57,共17页
The Cenozoic-age Makum coal from northeastern India offers numerous research opportunities because of its diverse geochemical and geological characteristics.Due to its high sulfur content,the coal has been found to be... The Cenozoic-age Makum coal from northeastern India offers numerous research opportunities because of its diverse geochemical and geological characteristics.Due to its high sulfur content,the coal has been found to be less useful for industrial purposes.It can,however,serve as a hub for ongoing research on coal-based derivative products.The aim of this research work is to investigate the mineralogical and geochemical compositions of the coal,mine overburden(MOB)and shale samples taken from the Makum coal field and also on establishing a mutual relationship between them.To characterize the geochemical controlling factors of the Makum coal field,the study employs coal petrography,FTIR,mineralogical,and geochemical analysis.According to X-ray diffraction analysis,the major minerals like quartz,kaolinite,haematite,illite,pyrite,and calcite are present in coal and MOB.Pyrite is observed by SEM-EDS analysis as cubic-shaped particles that are smaller than a fewμm in size.The presence of sulfide minerals represents a phase of pyrite mineralization.The petrography study was used to better understand the environment that existed during the formation of the plant material,which aids us in determining the quantity of detrital mineral sediment contained in the coal.According to the ICP-MS analysis,the samples indicate significant levels of rare earth elements including yttrium.The present study reveals higher concentrations of poten-tial hazardous elements in the coal samples,with V,Cr,Ni,Cu,and Zn content in coal being considerably enriched compared to world-average concentrations.The correlation analysis reveals that the potential hazardous elements like Co,Ni,As,and Cu are associated with pyrite as they have strong affinity towards pyrite.Thus,numerous minerals and rare earth elements(REEs)exist,opening up a fresh avenue for more research in the area.This study also assists researchers in understanding the significance of Makum coal and provides numerous ideas for coal characterization. 展开更多
关键词 Coal geology Mine waste overburden(MOB) PETROLOGY Rare earth elements(REEs) Potentially hazardous elements(PHEs)
下载PDF
深厚覆盖层上土石坝防渗墙损伤开裂精细化分析及防渗功能评价 被引量:1
20
作者 邹德高 屈永倩 +3 位作者 孔宪京 刘京茂 冉从勇 张丹 《水利学报》 EI CSCD 北大核心 2024年第2期147-157,共11页
混凝土防渗墙是覆盖层上土石坝坝基的关键防渗结构,由于防渗墙与覆盖层的刚度和尺度差异巨大,通常的数值分析方法难以保证精度,且现有基于强度的安全评价方法,无法适应防渗墙作为防渗结构而非承载结构的功能评价要求。本文提出了比例边... 混凝土防渗墙是覆盖层上土石坝坝基的关键防渗结构,由于防渗墙与覆盖层的刚度和尺度差异巨大,通常的数值分析方法难以保证精度,且现有基于强度的安全评价方法,无法适应防渗墙作为防渗结构而非承载结构的功能评价要求。本文提出了比例边界元-有限元耦合跨尺度离散、塑性损伤模型和内聚力模型分离描述压损伤和受拉开裂、破损后防渗功能目标评价的精细化分析方法,实现了深厚覆盖层上土石坝防渗墙的性态演化评价。研究结果表明:超深覆盖层上悬挂式防渗墙在两岸底部因近似垂直于岸坡的高压应力发生压损伤,类“外伸梁”的面内弯曲变形使靠近防渗墙两岸的顶部和底部区域产生坝轴向高拉应力导致槽段间出现竖向裂缝;在防渗墙两岸的上游侧局部设置辅助防渗措施,可有效降低防渗墙破损后的渗流量。本文方法揭示了混凝土防渗墙的损伤开裂模式,定位了防渗墙薄弱区域,评价了防渗墙损伤开裂对防渗功能的影响,量化防渗措施效果,实现了防渗墙从传统承载能力评价到功能性态评价的跨越,可为深厚覆盖层上土石坝防渗墙的安全评价和设计优化提供理论和技术支持。 展开更多
关键词 深厚覆盖层 防渗墙 损伤开裂分析 防渗功能 性态评价
下载PDF
上一页 1 2 134 下一页 到第
使用帮助 返回顶部