期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Suppressing Al2O3 nanoparticle coarsening and Cu nanograin growth of milled nanostructured Cu-5vol.%Al2O3 composite powder particles by doping with Ti 被引量:1
1
作者 Dengshan Zhou Hongwei Geng +3 位作者 Wei Zeng Deliang Zhang Charlie Kong Paul Munroe 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1323-1328,共6页
Both the coarsening of Al2O3 nanoparticles and the growth of Cu nanograins of mechanically milled nanostructured Cu-5 vol.%Al2O3 composites with, and without, trace amounts of Ti during annealing at973 K for 1 h were ... Both the coarsening of Al2O3 nanoparticles and the growth of Cu nanograins of mechanically milled nanostructured Cu-5 vol.%Al2O3 composites with, and without, trace amounts of Ti during annealing at973 K for 1 h were investigated. It was found that doping with a small amount of Ti(e.g. 0.2 wt%) in a nanostructured Cu-5 vol.%Al2O3 composite effectively suppressed the coarsening of Al2O3 nanoparticles during exposure at this temperature. Further, the Ti addition also prevented the concomitant abnormal growth of the copper grains normally caused by the coarsening of the Al2O3 nanoparticles. Energy dispersive X-ray spectroscopy analysis of the Al2O3 nanoparticles in the annealed Cu-5 vol.%Al2 O3-0.2 wt%Ti sample suggested that the Ti atoms either diffused into the Al2O3 nanoparticles or segregated to the Cu/Al2O3 interfaces to form Ti-doped Al2O3 nanoparticles, which was more stable than Ti-free Al2O3 nanoparticles during annealing at high homologous temperatures. 展开更多
关键词 Nanostructured copper matrix composites minor alloying Annealing Grain growth Particle coarsening
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部