Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the ...Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.展开更多
The rising demand for energy storage solutions,especially in the electric vehicle and renewable energy sectors,highlights the importance of accurately predicting battery health to enhance their longevity and reliabili...The rising demand for energy storage solutions,especially in the electric vehicle and renewable energy sectors,highlights the importance of accurately predicting battery health to enhance their longevity and reliability.This article comprehensively examines various methods used to forecast battery health,including physics-based models,empirical models,and equivalent circuit models,among others.It delves into the promise of data-driven prognostics,utilizing both conventional machine learning and cuttingedge deep neural network techniques.The advantages and limitations of hybrid models are thoroughly analyzed,with a focus on the benefits of integrating diverse data sources to improve prognostic precision.Through practical case studies,the article showcases the effectiveness and flexibility of these approaches.It also critically addresses the challenges encountered in applying battery health prognostics in realworld scenarios,such as issues of scalability,complexity,and data anomalies.Despite these challenges,the article underscores the emerging opportunities brought about by recent technological,academic,and research advancements.These include the development of digital twin models for batteries,the use of data-centric AI and standardized benchmarking,the potential integration of blockchain technology for enhanced data security and transparency,and the synergy between edge and cloud computing to boost data analysis and processing.The primary goal of this article is to enrich the understanding of current battery health prognostic techniques and to inspire further research aimed at overcoming existing hurdles and tapping into new opportunities.It concludes with a visionary perspective on future research directions and potential developments in this evolving field,encouraging both researchers and practitioners to explore innovative solutions.展开更多
Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the ...Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the objective of this study was to assess the risk of cancer due to the ingestion of alpha and beta emitting radionuclides in the different types of water consumed in the region. A total of 63 water samples with 43 tap water samples, 5 bottled mineral water and 15 sachet water samples was collected and taken to GAEC laboratory for analysis. The low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) was used to determine alpha and beta activity concentrations. Activity concentrations of both gross alpha and gross beta obtained in water sample were respectively lower than the WHO recommended limits of 0.1 Bq/l and 1 Bq/l. Also, the annual effective dose and total equivalent effective dose found in mineral bottled water samples were higher than in other types of water. The assessment of radiological lifetime risk has shown values of cancer risk due to ingestion alpha and beta emitters lower than recommended limit. These results indicate that there is no health hazard associated to consumption of water in the District of Abidjan.展开更多
In the digital era,retailers are keen to find out whether omni-channel retailing helps improve long-term firm performance.In this paper,we employ machine learning techniques on a large consumption data set in order to...In the digital era,retailers are keen to find out whether omni-channel retailing helps improve long-term firm performance.In this paper,we employ machine learning techniques on a large consumption data set in order to measure customer lifetime value(CLV)as the basis for determining long-term firm performance,and we provide an empirical analysis of the relationship between omni-channel retailing and CLV.The results suggest that omni-channel retailing may effectively enhance CLV.Further analysis reveals that this process is influenced by heterogeneous consumer requirements and that significant differences exist in the extent to which the omni-channel transition may influence CLV depending on consumer preferences for diversity of commodities,sensitivity to the cost of contract performance,and sensitivity to warehousing costs.Hence,retailers should provide consumers with a complete portfolio of goods and services based on target consumers’heterogeneous requirements in order to increase omni-channel efficiency.展开更多
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the...In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the results from such methods are compromised in terms of achieving high lifetime.With this objective to increase the lifetime of network,an Efficient Topology driven Cooperative Self-Scheduling(TDCSS)model is recommended in this study.Instead of scheduling the network nodes in a centralized manner,a combined approach is proposed.Based on the situation,the proposed TDCSS approach performs scheduling in both the ways.By sharing the node statistics in a periodic manner,the overhead during the transmission of control packets gets reduced.This in turn impacts the lifetime of all the nodes.Further,this also reduces the number of idle conditions of each sensor node which is required for every cycle.The proposed method enables every sensor to schedule its own conditions according to duty cycle and topology constraints.Central scheduler monitors the network conditions whereas total transmissions occurs at every cycle.According to this,the source can infer the possible routes in a cycle and approximate the available routes.Further,based on the statistics of previous transmissions,the routes towards the sink are identified.Among the routes found,a single optimal route with energy efficiency is selected to perform data transmission.This cooperative approach improves the lifetime of entire network with high throughput performance.展开更多
Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PC...Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PCD).The minority carrier lifetime decreased after each thermal oxidation.On the contrary,with the hydrogen annealing time increasing to3 hours,the minority carrier lifetime increased from 1.1μs(as-grown)to 3.14μs and then saturated after the annealing time reached 4 hours.The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes.Moreover,the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed.The average minority carrier lifetime was up to 1.94μs and non-uniformity of carrier lifetime reached 38%after 4-hour hydrogen annealing.The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.展开更多
Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl ...Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.展开更多
An experimental measurement of the lifetime of 3d^(9) ^(2)D_(3/2) metastable level in Mo^(15+)is reported in this work.The Mo^(15+)ions are produced and trapped in an electron beam ion trap with a magnetic field of 0....An experimental measurement of the lifetime of 3d^(9) ^(2)D_(3/2) metastable level in Mo^(15+)is reported in this work.The Mo^(15+)ions are produced and trapped in an electron beam ion trap with a magnetic field of 0.65 T.The decay photons emitted from 3d^(9) ^(2)D_(3/2) level are subsequently recorded via a cooled photomultiplier tube.Through meticulous scrutiny of potential systematic uncertainties affecting the measurement outcomes,we have determined the lifetime of Mo^(15+)3d^(9)2D_(3/2)metastable level to be 2.83(22)ms.The experimental result provides a clear distinguishment from existing calculations based on various theoretical approaches.展开更多
Colloidal CdSe quantum dots(QDs)are promising materials for solar cells because of their simple preparation pro-cess and compatibility with flexible substrates.The QD radiative recombination lifetime has attracted eno...Colloidal CdSe quantum dots(QDs)are promising materials for solar cells because of their simple preparation pro-cess and compatibility with flexible substrates.The QD radiative recombination lifetime has attracted enormous attention as it affects the probability of photogenerated charges leaving the QDs and being collected at the battery electrodes.However,the scaling law for the exciton radiative lifetime in CdSe QDs is still a puzzle.This article presents a novel explanation that recon-ciles this controversy.Our calculations agree with the experimental measurements of all three divergent trends in a broadened energy window.Further,we proved that the exciton radiative lifetime is a consequence of the thermal average of decays for all thermally accessible exciton states.Each of the contradictory size-dependent patterns reflects this trend in a specific size range.As the optical band gap increases,the radiative lifetime decreases in larger QDs,increases in smaller QDs,and is weakly depend-ent on size in the intermediate energy region.This study addresses the inconsistencies in the scaling law of the exciton life-time and gives a unified interpretation over a widened framework.Moreover,it provides valuable guidance for carrier separa-tion in the thin film solar cell of CdSe QDs.展开更多
Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Repu...Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Republic,Mexico,Baltic sea,Myanmar,and Fushun,China.The results show that amber from the same geographic origin has similar shape in phosphorescence spectra.However,the shape of the amber phosphorescence spectra varies depending on their different localities.Burmite(amber from Myanmar)and Fushun amber have a bright yellow phosphorescence with a long lifetime,while the Dominican and Mexican ones are weaker and last shorter.The irradiation of Baltic amber becomes faint or even inert.Phosphorescence spectral Gaussian fitting results suggest an emission maximum near 550 nm in most amber samples.Their phosphorescence lifetime,analyzed through the exponential function fitting,is up to 1 second in Burmite and Fushun samples,shorter in the Dominican and Mexican ones,about 0.230 s,and the shortest in Baltic amber,close to 0.151 s.These variations of phosphorescence lifetime and intensity are related to the relative geological ages of these amber.It indicated that the phosphorescence agent was probably formed during the long geological time.While the anomaly occurred in Baltic amber,the only one found in a sea secondary deposit form,it demonstrated that the terrestrial geological environment these amber preserved has prevented the phosphorescence agent to be deactivated.展开更多
The air continues to be an extremely substantial part of survival on earth.Air pollution poses a critical risk to humans and the environment.Using sensor-based structures,we can get air pollutant data in real-time.How...The air continues to be an extremely substantial part of survival on earth.Air pollution poses a critical risk to humans and the environment.Using sensor-based structures,we can get air pollutant data in real-time.However,the sensors rely upon limited-battery sources that are immaterial to be alternated repeatedly amid extensive broadcast costs associated with real-time applications like air quality monitoring.Consequently,air quality sensor-based monitoring structures are lifetime-constrained and prone to the untimely loss of connectivity.Effective energy administration measures must therefore be implemented to handle the outlay of power dissipation.In this study,the authors propose outdoor air quality monitoring using a sensor network with an enhanced lifetime-enhancing cooperative data gathering and relaying algorithm(E-LCDGRA).LCDGRA is a cluster-based cooperative event-driven routing scheme with dedicated relay allocation mechanisms that tackle the problems of event-driven clustered WSNs with immobile gateways.The adapted variant,named E-LCDGRA,enhances the LCDGRA algorithm by incorporating a non-beacon-aided CSMA layer-2 un-slotted protocol with a back-off mechanism.The performance of the proposed E-LCDGRA is examined with other classical gathering schemes,including IEESEP and CERP,in terms of average lifetime,energy consumption,and delay.展开更多
A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
A method for fast gate oxide TDDB lifetime prediction for process control monitors (PCM) is proposed. For normal TDDB lifetime prediction at operation voltage and temperature, we must ge(three lifetimes at relative...A method for fast gate oxide TDDB lifetime prediction for process control monitors (PCM) is proposed. For normal TDDB lifetime prediction at operation voltage and temperature, we must ge(three lifetimes at relative low stress voltages and operation temperature. Then we use these three lifetimes to project the TDDB lifetime at operation voltage and temperature via the E-model. This requires a very long time for measurement. With our new method,it can be calculated quickly by projecting the TDDB lifetime at operation voltage and temperature with measurement data at relatively high stress voltages. Our test case indicates that this method is very effective. And the result with our new method is very close to that with the normal TDDB lifetime prediction method. But the measurement time is less than 50s for one sample,less than 1/100000 of that with the normal prediction method. With this new method,we can monitor gate oxide TDDB lifetime on-line.展开更多
A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature ca...A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature can reach 550℃ even at a low current of 0.1mA.Experimental results support that the minority-carrier exclusion effect can be strong in the conventional resistor structure when the silicon film is sufficiently thin,thus significantly raising the maximum operating temperature.Moreover,since the structure of the device on thin-film SOI wafer is not crucial in controlling the maximum operating temperature,device layout can be varied according to the requirements of applications.展开更多
A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of life...A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of lifetime X and its equilibrium Xo. The relationships of the NBEE (NWEE) and other lifetime distribution classes are discussed. It is proved that the NBEE is very large, and increasing failure rate (IFR), new better than used (NBU) and the L class are its subclasses. The closure properties under two kinds of reliability operations, namely, convolution and mixture, are investigated. Furthermore, a Poisson shock model and a special cumulative model are also studied, in which the necessary and sufficient conditions for the NBEE (NWEE) lifetime distribution of the systems are established. In the homogenous Poisson shock model, the system lifetime belongs to NBEE(NWEE) if and only if the corresponding discrete failure distribution belongs to the discrete NBEE(NWEE). While in the cumulative model, the system has an NBEE lifetime if and only if the stochastic threshold of accumulated damage is NBEE.展开更多
In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be character...In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation to follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t~ and the time for crack to develop from hairline crack to a limit crack width t2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life to and that the percentage of participation of the life to to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion.展开更多
Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynami...Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics(CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics(CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.展开更多
GaN-based continuous-wave operated blue-violet laser diodes(LDs) with long lifetime are demonstrated, which are grown on a c-plane GaN substrate by metal organic chemical vapor deposition with a 10 × 600 μm^2 ri...GaN-based continuous-wave operated blue-violet laser diodes(LDs) with long lifetime are demonstrated, which are grown on a c-plane GaN substrate by metal organic chemical vapor deposition with a 10 × 600 μm^2 ridge waveguide structure.The electrical and optical characteristics of a blue-violet LD are investigated under direct-current injection at room temperature(25 °C). The stimulated emission wavelength and peak optical power of the LD are around 413 nm and over 600 mW, respectively.In addition, the threshold current density and voltage are as small as 1.46 kA/cm^2 and 4.1 V, respectively. Moreover, the lifetime is longer than 1000 hours under room-temperature continuous-wave operation.展开更多
There are many difficulties in concrete endurance prediction, especially in accurate predicting service life of concrete engineering. It is determined by the concentration of S042-/ Mg2+ / Cl- /Ca2+ , reactionareas , ...There are many difficulties in concrete endurance prediction, especially in accurate predicting service life of concrete engineering. It is determined by the concentration of S042-/ Mg2+ / Cl- /Ca2+ , reactionareas , the cycles of freezing and dissolving, alternatives of dry and wet state, the kind of cement, etc. . In general , because of complexity itself and cognitive limitation, endurance prediction under sulphate erosion is still illegible and uncertain, so this paper adopts neural network technology to research this problem. Through analyzing , the paper sets up a 3 - levels neural network and a 4 - levels neural network to predict the endurance undersulphate erosion. The 3 - levels neural network includes 13 inputting nodes, 7 outputting nodes and 34 hidden nodes. The 4 - levels neural network also has 13 inputting nodes and 7 outputting nodes with two hidden levels which has 1 nodes and 8 nodes separately. In the end the paper give a example with laboratorial data and discussion the result and deviation. The paper shows that deviation results from some faults of training specimens; such as few training specimens and few distinctions among training specimens. So the more specimens should be collected to reduce data redundancy and improve the reliability of network analysis conclusion.展开更多
基金supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005).
文摘Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.
基金funded by the Independent Innovation Projects of the Hubei Longzhong Laboratory(2022ZZ-24)the Central Government to Guide Local Science and Technology Development fund Projects of Hubei Province(2022BGE267).
文摘The rising demand for energy storage solutions,especially in the electric vehicle and renewable energy sectors,highlights the importance of accurately predicting battery health to enhance their longevity and reliability.This article comprehensively examines various methods used to forecast battery health,including physics-based models,empirical models,and equivalent circuit models,among others.It delves into the promise of data-driven prognostics,utilizing both conventional machine learning and cuttingedge deep neural network techniques.The advantages and limitations of hybrid models are thoroughly analyzed,with a focus on the benefits of integrating diverse data sources to improve prognostic precision.Through practical case studies,the article showcases the effectiveness and flexibility of these approaches.It also critically addresses the challenges encountered in applying battery health prognostics in realworld scenarios,such as issues of scalability,complexity,and data anomalies.Despite these challenges,the article underscores the emerging opportunities brought about by recent technological,academic,and research advancements.These include the development of digital twin models for batteries,the use of data-centric AI and standardized benchmarking,the potential integration of blockchain technology for enhanced data security and transparency,and the synergy between edge and cloud computing to boost data analysis and processing.The primary goal of this article is to enrich the understanding of current battery health prognostic techniques and to inspire further research aimed at overcoming existing hurdles and tapping into new opportunities.It concludes with a visionary perspective on future research directions and potential developments in this evolving field,encouraging both researchers and practitioners to explore innovative solutions.
文摘Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the objective of this study was to assess the risk of cancer due to the ingestion of alpha and beta emitting radionuclides in the different types of water consumed in the region. A total of 63 water samples with 43 tap water samples, 5 bottled mineral water and 15 sachet water samples was collected and taken to GAEC laboratory for analysis. The low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) was used to determine alpha and beta activity concentrations. Activity concentrations of both gross alpha and gross beta obtained in water sample were respectively lower than the WHO recommended limits of 0.1 Bq/l and 1 Bq/l. Also, the annual effective dose and total equivalent effective dose found in mineral bottled water samples were higher than in other types of water. The assessment of radiological lifetime risk has shown values of cancer risk due to ingestion alpha and beta emitters lower than recommended limit. These results indicate that there is no health hazard associated to consumption of water in the District of Abidjan.
基金the National Social Science Foundation of China(NSSFC)“Study on the Digital Transition of China’s Retail Business”(Grant No.18BJY176).
文摘In the digital era,retailers are keen to find out whether omni-channel retailing helps improve long-term firm performance.In this paper,we employ machine learning techniques on a large consumption data set in order to measure customer lifetime value(CLV)as the basis for determining long-term firm performance,and we provide an empirical analysis of the relationship between omni-channel retailing and CLV.The results suggest that omni-channel retailing may effectively enhance CLV.Further analysis reveals that this process is influenced by heterogeneous consumer requirements and that significant differences exist in the extent to which the omni-channel transition may influence CLV depending on consumer preferences for diversity of commodities,sensitivity to the cost of contract performance,and sensitivity to warehousing costs.Hence,retailers should provide consumers with a complete portfolio of goods and services based on target consumers’heterogeneous requirements in order to increase omni-channel efficiency.
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
文摘In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the results from such methods are compromised in terms of achieving high lifetime.With this objective to increase the lifetime of network,an Efficient Topology driven Cooperative Self-Scheduling(TDCSS)model is recommended in this study.Instead of scheduling the network nodes in a centralized manner,a combined approach is proposed.Based on the situation,the proposed TDCSS approach performs scheduling in both the ways.By sharing the node statistics in a periodic manner,the overhead during the transmission of control packets gets reduced.This in turn impacts the lifetime of all the nodes.Further,this also reduces the number of idle conditions of each sensor node which is required for every cycle.The proposed method enables every sensor to schedule its own conditions according to duty cycle and topology constraints.Central scheduler monitors the network conditions whereas total transmissions occurs at every cycle.According to this,the source can infer the possible routes in a cycle and approximate the available routes.Further,based on the statistics of previous transmissions,the routes towards the sink are identified.Among the routes found,a single optimal route with energy efficiency is selected to perform data transmission.This cooperative approach improves the lifetime of entire network with high throughput performance.
基金Project supported by Key Area Research and Development Project of Guangdong Province,China(Grant No.2020B010170002)the Science Challenge Project(Grant No.TZ2018003-1-101)+4 种基金the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars(Grant No.2020J06002)the Science and Technology Project of Fujian Province of China(Grant No.2020I0001)the Fundamental Research Funds for the Central Universities(Grant Nos.20720190049 and 20720190053)the Science and Technology Key Projects of Xiamen(Grant No.3502ZCQ20191001)the National Natural Science Foundation of China(Grant No.51871189)。
文摘Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PCD).The minority carrier lifetime decreased after each thermal oxidation.On the contrary,with the hydrogen annealing time increasing to3 hours,the minority carrier lifetime increased from 1.1μs(as-grown)to 3.14μs and then saturated after the annealing time reached 4 hours.The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes.Moreover,the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed.The average minority carrier lifetime was up to 1.94μs and non-uniformity of carrier lifetime reached 38%after 4-hour hydrogen annealing.The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.
基金Project supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005)。
文摘Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1602500)the National Natural Science Foundation of China(Grant No.12274352)。
文摘An experimental measurement of the lifetime of 3d^(9) ^(2)D_(3/2) metastable level in Mo^(15+)is reported in this work.The Mo^(15+)ions are produced and trapped in an electron beam ion trap with a magnetic field of 0.65 T.The decay photons emitted from 3d^(9) ^(2)D_(3/2) level are subsequently recorded via a cooled photomultiplier tube.Through meticulous scrutiny of potential systematic uncertainties affecting the measurement outcomes,we have determined the lifetime of Mo^(15+)3d^(9)2D_(3/2)metastable level to be 2.83(22)ms.The experimental result provides a clear distinguishment from existing calculations based on various theoretical approaches.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2800304.
文摘Colloidal CdSe quantum dots(QDs)are promising materials for solar cells because of their simple preparation pro-cess and compatibility with flexible substrates.The QD radiative recombination lifetime has attracted enormous attention as it affects the probability of photogenerated charges leaving the QDs and being collected at the battery electrodes.However,the scaling law for the exciton radiative lifetime in CdSe QDs is still a puzzle.This article presents a novel explanation that recon-ciles this controversy.Our calculations agree with the experimental measurements of all three divergent trends in a broadened energy window.Further,we proved that the exciton radiative lifetime is a consequence of the thermal average of decays for all thermally accessible exciton states.Each of the contradictory size-dependent patterns reflects this trend in a specific size range.As the optical band gap increases,the radiative lifetime decreases in larger QDs,increases in smaller QDs,and is weakly depend-ent on size in the intermediate energy region.This study addresses the inconsistencies in the scaling law of the exciton life-time and gives a unified interpretation over a widened framework.Moreover,it provides valuable guidance for carrier separa-tion in the thin film solar cell of CdSe QDs.
基金the financial support from the National Key R&D Program of China(2018YFF0215400)grants from the Gemmological Institute of the China University of Geosciences in Wuhan。
文摘Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Republic,Mexico,Baltic sea,Myanmar,and Fushun,China.The results show that amber from the same geographic origin has similar shape in phosphorescence spectra.However,the shape of the amber phosphorescence spectra varies depending on their different localities.Burmite(amber from Myanmar)and Fushun amber have a bright yellow phosphorescence with a long lifetime,while the Dominican and Mexican ones are weaker and last shorter.The irradiation of Baltic amber becomes faint or even inert.Phosphorescence spectral Gaussian fitting results suggest an emission maximum near 550 nm in most amber samples.Their phosphorescence lifetime,analyzed through the exponential function fitting,is up to 1 second in Burmite and Fushun samples,shorter in the Dominican and Mexican ones,about 0.230 s,and the shortest in Baltic amber,close to 0.151 s.These variations of phosphorescence lifetime and intensity are related to the relative geological ages of these amber.It indicated that the phosphorescence agent was probably formed during the long geological time.While the anomaly occurred in Baltic amber,the only one found in a sea secondary deposit form,it demonstrated that the terrestrial geological environment these amber preserved has prevented the phosphorescence agent to be deactivated.
文摘The air continues to be an extremely substantial part of survival on earth.Air pollution poses a critical risk to humans and the environment.Using sensor-based structures,we can get air pollutant data in real-time.However,the sensors rely upon limited-battery sources that are immaterial to be alternated repeatedly amid extensive broadcast costs associated with real-time applications like air quality monitoring.Consequently,air quality sensor-based monitoring structures are lifetime-constrained and prone to the untimely loss of connectivity.Effective energy administration measures must therefore be implemented to handle the outlay of power dissipation.In this study,the authors propose outdoor air quality monitoring using a sensor network with an enhanced lifetime-enhancing cooperative data gathering and relaying algorithm(E-LCDGRA).LCDGRA is a cluster-based cooperative event-driven routing scheme with dedicated relay allocation mechanisms that tackle the problems of event-driven clustered WSNs with immobile gateways.The adapted variant,named E-LCDGRA,enhances the LCDGRA algorithm by incorporating a non-beacon-aided CSMA layer-2 un-slotted protocol with a back-off mechanism.The performance of the proposed E-LCDGRA is examined with other classical gathering schemes,including IEESEP and CERP,in terms of average lifetime,energy consumption,and delay.
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
文摘A method for fast gate oxide TDDB lifetime prediction for process control monitors (PCM) is proposed. For normal TDDB lifetime prediction at operation voltage and temperature, we must ge(three lifetimes at relative low stress voltages and operation temperature. Then we use these three lifetimes to project the TDDB lifetime at operation voltage and temperature via the E-model. This requires a very long time for measurement. With our new method,it can be calculated quickly by projecting the TDDB lifetime at operation voltage and temperature with measurement data at relatively high stress voltages. Our test case indicates that this method is very effective. And the result with our new method is very close to that with the normal TDDB lifetime prediction method. But the measurement time is less than 50s for one sample,less than 1/100000 of that with the normal prediction method. With this new method,we can monitor gate oxide TDDB lifetime on-line.
文摘A silicon temperature sensor with a conventional resistor structure is fabricated on thin-film silicon-on-insulator (SOI) substrate.The sensor has very promising characteristics.The maximum operating temperature can reach 550℃ even at a low current of 0.1mA.Experimental results support that the minority-carrier exclusion effect can be strong in the conventional resistor structure when the silicon film is sufficiently thin,thus significantly raising the maximum operating temperature.Moreover,since the structure of the device on thin-film SOI wafer is not crucial in controlling the maximum operating temperature,device layout can be varied according to the requirements of applications.
基金The National Natural Science Foundation of China(No. 10801032)
文摘A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of lifetime X and its equilibrium Xo. The relationships of the NBEE (NWEE) and other lifetime distribution classes are discussed. It is proved that the NBEE is very large, and increasing failure rate (IFR), new better than used (NBU) and the L class are its subclasses. The closure properties under two kinds of reliability operations, namely, convolution and mixture, are investigated. Furthermore, a Poisson shock model and a special cumulative model are also studied, in which the necessary and sufficient conditions for the NBEE (NWEE) lifetime distribution of the systems are established. In the homogenous Poisson shock model, the system lifetime belongs to NBEE(NWEE) if and only if the corresponding discrete failure distribution belongs to the discrete NBEE(NWEE). While in the cumulative model, the system has an NBEE lifetime if and only if the stochastic threshold of accumulated damage is NBEE.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50538087, 50908103 and 50878098)
文摘In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation to follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t~ and the time for crack to develop from hairline crack to a limit crack width t2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life to and that the percentage of participation of the life to to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion.
基金Supported by National Natural Science Foundation of China(Grant No51406148)National Science Technology Support Program of China(Grant No.2012BAA08B06)Postdoctoral Science Foundation o China(Grant No.2014M552444)
文摘Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics(CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics(CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.
基金supported by the National Key R&D Program of China (Nos. 2016YFB0401801, 2016YFB0400803)the Science Challenge Project (No. TZ2016003)+1 种基金the National Natural Science Foundation of China (Nos. 61674138, 61674139, 61604145, 61574135, 61574134, 61474142, 61474110)the Beijing Municipal Science and Technology Project (No. Z161100002116037)
文摘GaN-based continuous-wave operated blue-violet laser diodes(LDs) with long lifetime are demonstrated, which are grown on a c-plane GaN substrate by metal organic chemical vapor deposition with a 10 × 600 μm^2 ridge waveguide structure.The electrical and optical characteristics of a blue-violet LD are investigated under direct-current injection at room temperature(25 °C). The stimulated emission wavelength and peak optical power of the LD are around 413 nm and over 600 mW, respectively.In addition, the threshold current density and voltage are as small as 1.46 kA/cm^2 and 4.1 V, respectively. Moreover, the lifetime is longer than 1000 hours under room-temperature continuous-wave operation.
基金Funded by the Nith-five Plan Key Project in Scientific and Technological Research (9653533)
文摘There are many difficulties in concrete endurance prediction, especially in accurate predicting service life of concrete engineering. It is determined by the concentration of S042-/ Mg2+ / Cl- /Ca2+ , reactionareas , the cycles of freezing and dissolving, alternatives of dry and wet state, the kind of cement, etc. . In general , because of complexity itself and cognitive limitation, endurance prediction under sulphate erosion is still illegible and uncertain, so this paper adopts neural network technology to research this problem. Through analyzing , the paper sets up a 3 - levels neural network and a 4 - levels neural network to predict the endurance undersulphate erosion. The 3 - levels neural network includes 13 inputting nodes, 7 outputting nodes and 34 hidden nodes. The 4 - levels neural network also has 13 inputting nodes and 7 outputting nodes with two hidden levels which has 1 nodes and 8 nodes separately. In the end the paper give a example with laboratorial data and discussion the result and deviation. The paper shows that deviation results from some faults of training specimens; such as few training specimens and few distinctions among training specimens. So the more specimens should be collected to reduce data redundancy and improve the reliability of network analysis conclusion.