为了理解荒漠短命植物小车前(Plantago minuta Pall.)种子表面的粘液物质对种子在干旱环境中萌发的作用,在室内控制条件下研究了粘液物质的吸水保水特性、剥离粘液物质的种子(无粘液种子)和保留粘液物质的种子(粘液种子)在-1.15^-0.15MP...为了理解荒漠短命植物小车前(Plantago minuta Pall.)种子表面的粘液物质对种子在干旱环境中萌发的作用,在室内控制条件下研究了粘液物质的吸水保水特性、剥离粘液物质的种子(无粘液种子)和保留粘液物质的种子(粘液种子)在-1.15^-0.15MPa不同渗透胁迫条件下的萌发状况。结果表明:(1)小车前种子表面的粘液物质干重占粘液种子干重的5.6%;在去离子水中,粘液物质可以吸收相当于其自身干重217.1倍的水分;粘液物质的存在使得小车前种子的吸水倍数由2倍增加至14倍,从而保证为种子萌发提供充足的水分;(2)干燥的粘液种子吸水2h后即达到饱和,而吸水饱和后的粘液种子在室温下晾置,经过48h后又干燥失水恢复至原重;(3)在去离子水中或低渗透胁迫(-0.33^-0.15MPa)条件下,粘液物质吸水作用能促进小车前种子萌发,粘液种子3d的发芽势和10d的总萌发率均显著高于无粘液种子;在高渗透胁迫(-1.15^-0.73MPa)条件下,粘液种子3d的发芽势显著低于无粘液种子的,而10d的总萌发率与无粘液种子的没有显著差别,表明粘液物质在干旱条件下可能从种子而非外界环境中吸取水分,减缓了种子萌发速率。通过上述结果可以认为小车前种子表面的粘液物质在早春干湿交替剧烈的荒漠生境中起到通过调节水分来调节种子萌发的作用,这种萌发策略大大降低了因大批种子同时萌发导致幼苗受旱甚至种群灭亡的潜在风险。展开更多
Introgression line population is effectively used in mapping quantitative trait loci(QTLs),identifying favorable genes,discovering hidden genetic variation,evaluating the action or interaction of QTLs in multiple co...Introgression line population is effectively used in mapping quantitative trait loci(QTLs),identifying favorable genes,discovering hidden genetic variation,evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research.In this study,an advanced backcross and consecutive selfing strategy was used to develop introgression lines(ILs),which derived from an accession of Oryza minuta(accession No.101133) with BBCC genome,as the donor,and an elite indica cultivar IR24(O.sativa),as the recipient.Introgression segments from O.minuta were screened using 164 polymorphic simple sequence repeat(SSR) markers in the genome of each IL.Introgressed segments carried by 131 ILs covered the whole O.sativa genome.The average number of homozygous O.minuta segments per introgression line was about 9.99.The average length of introgressed segments was approximate 14.78 cM,and about 79.64% of these segments had sizes less than 20 cM.In the genome of each introgression line,the O.minuta chromosomal segments harbored chromosomal fragments of O.sativa ranging from 1.15% to 27.6%,with an overall average of 8.57%.At each locus,the ratio of substitution of O.minuta alleles had a range of 1.5% 25.2%,with an average of 8.3%.Based on the evaluation of the phenotype of these ILs,a wide range of alterations in morphological and yield-related traits were found.After inoculation,ILs 41,11 and 7 showed high resistance to bacterial blight,brown planthopper and whitebacked planthopper,respectively.These O.minuta-O.sativa ILs will serve as genetic materials for identifying and using favorable genes from O.minuta.展开更多
Objective:To investigate antioxidant and anti-inflammatory effects of Tagetes minuta(T.minuta)essential oil.Methods:In the present study T.minuta essential oil was obtained from leaves of T.minuta via hydro-distillati...Objective:To investigate antioxidant and anti-inflammatory effects of Tagetes minuta(T.minuta)essential oil.Methods:In the present study T.minuta essential oil was obtained from leaves of T.minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry.The antioxidant capacity of T.minuta essential oil was examined by measuring reactive oxygen,reactive nitrogen species and hydrogen peroxide scavenging.The anti-inflammatory activity of T.minuta essential oil was determined through measuring NADH oxidase,inducible nitric oxide synthase and TNF-αmRNA expression in lipopolysacharide-stimulated murine macrophages using realtime PCR.Results:Gas chromatography-mass spectrometry analysis indicated that the main components in the T.minuta essential oil were dihydrotagetone(33.86%),E-ocimene(19.92%).tagetone(16.15%),cis-β-ocimene(7.94%),Z-ocimene(5.27%).limonene(3.1%)and epoxyocimene(2.03%).The T.minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC_(50)12-15μg/mL,which indicated a potent radical scavenging activity.In addition,T.minuta essential oil significantly reduced NADH oxidase,inducible nitric oxide synthaseand TNF-αmRNA expression in the cells at concentrations of 50μg/mL,indicating a capacity of this product to potentially modulate/diminish immune responses.Conclusions:T.minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions.展开更多
To transfer desirable resistance traits from O. minuta to O. sativa, intergeneric hybrid plants between O. sativa (AA, 2n=2X=24) and O. minuta (BBCC, 2n=4X=48) were produced by embryo rescue after sexual cross. Morpho...To transfer desirable resistance traits from O. minuta to O. sativa, intergeneric hybrid plants between O. sativa (AA, 2n=2X=24) and O. minuta (BBCC, 2n=4X=48) were produced by embryo rescue after sexual cross. Morphological observation and chromosome counts indicated their hybrid status (ABC, 2n=3X=36). Genomic in situ hybridization (GISH) was further applied to confirm the parentage of the chromosomes of F 1 hybrids. Chromosomes of O. minuta and O. sativa were distinguishable in the hybrids in different fluorescence colors. GISH indicated that A and BC chromosomes were not randomly assembled in a cell. RAPD profiles unequivocally revealed their hybrids with double parent patterns. The results of blast tests showed that the hybrids had obtained disease resistance from O. minuta, and had a level of susceptibility between the parents.展开更多
Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(A...Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(AM fungi) are widely reported to improve the growth of desert ephemerals.The present study aimed to test the hypothesis of that AM fungi could alleviate drought stress of desert ephemeral Plantago minuta,and AM fungal functions reduced with the improvement of soil water content.A pot experiment was carried out with three levels of soil water contents(4.5%,9.0%,and 15.8%(w/w)),and three AM inoculation treatments(Glomus mosseae,Glomus etunicatum and non-inoculation).The results indicate that mycorrhizal colonization rate decreased with the increase of soil water availability.Inoculation improved plant growth and N,P and K acquisition in both shoots and roots regardless water treatments.When comparing the two fungi,plants inoculated with G.mosseae performed better than those inoculated with G.etunicatum in terms of plant growth and nutrient acquisition.These results showed that ameliorative soil water did not suppress arbuscular mycorrhizal fungal functions in improving growth and nutrient acquisition of desert ephemeral Plantago minuta.展开更多
Objective:To evaluate in vitro effects of Tagetes minuta L. essential oil(TEO) on L3 Anisakis larvae type 1. Methods:In order to evaluate the potential use of Tagetes minuta essential oil against L3 Anisakis larvae th...Objective:To evaluate in vitro effects of Tagetes minuta L. essential oil(TEO) on L3 Anisakis larvae type 1. Methods:In order to evaluate the potential use of Tagetes minuta essential oil against L3 Anisakis larvae three different media were tested:1) a saline solution(SS); 2) an industrial marinating solution; 3) sunflower seeds oil(SO). For each media and concentrations of TEO(0.1%,0.5%,1.0% and 5.0% v/v),20 parasites were introduced into plastic Petri dishes(diameter 90 mm) and maintained at room temperature. As controls,larvae were maintained without TEO under identical experimental conditions in SS,MS and SO. A total of 900 larvae were tested. The normalized mean viability,LT100,LT50 and the percentage of inactivation at 24 hours were calculated. Results:In vitro tests revealed a complete inactivation of parasites in saline solution after 2 hours with 5% and 1% of TEO. In marinating solution,a complete inactivation of parasites was observed after 4 hours at all concentrations used. A slower activity for all TEO concentration was reported in SO. Conclusions:The results obtained,showing a strong activity against Anisakis larvae,confirm TEO as a larvicidal agent in the treatment of human anisakidosis and in the industrial marinating process.展开更多
In a hydroponic based experiment, the Cd toxicity is monitored with some cellular responses of Marsilea plant. Initially, plants were grown under varying concentrations (0, 50, 100 and 200 μM of Cd) of cadmium (Cd) w...In a hydroponic based experiment, the Cd toxicity is monitored with some cellular responses of Marsilea plant. Initially, plants were grown under varying concentrations (0, 50, 100 and 200 μM of Cd) of cadmium (Cd) with supplementation of 2 mM spermidine (Spd). The oxidative stress developed by Cd overaccumulation was measured with fall in Relative Growth Rate (RGR) by 27.11% to 59.83% growth reduction over control under varying Cd treatments. The retrieval of RGR was recovered by 1.59 folds as compared to the highest concentration of Cd (200 μM) when plants were fed with Spd. A concomitant degradation of chlorophyll was recorded in dose-dependant manner, however, the retrieval was not much pronounced with Spd. On the contrary, the non-oxidant thiol had borne more clarity with ongoing Cd concentration and appeared to be 40.51% increase maximally for GSH: GSSG at the highest concentration of Cd. Spd has minimized the ratio by 27.4%. The recovery of osmotic turgidity was indexed with a sharp rise in glycine betaine by 3.86 folds maximum at the highest concentration of Cd over control which declined by 30.9% with Spd. Another cellular response of treated plants was more evident from their isozymic profiles with regard to superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX). The intensity of protein expression was significantly variable but not in band numbers as evident from Cd treated plants. In vitro enzyme assay of catalase showed as declining trend within the limit of 33.13% to 43.22% which was reported by 1.45 folds when Spd was applied. Therefore, from the present study, the cellular responses of Marsilea plant which showed compatibility for their expression with Cd toxicity could be hypothesized as a case of bioindication.展开更多
Evaluation of O. minuta for the re-sistance to the brown planthopper(BPH), Nilaparvata lugens (Stl)was carried out by using ModifiedSeedbox Screening Technique(MSST) . Based on the significtmtdifferences between O. mi...Evaluation of O. minuta for the re-sistance to the brown planthopper(BPH), Nilaparvata lugens (Stl)was carried out by using ModifiedSeedbox Screening Technique(MSST) . Based on the significtmtdifferences between O. minuta,E13-9, and the susceptible check展开更多
文摘为了理解荒漠短命植物小车前(Plantago minuta Pall.)种子表面的粘液物质对种子在干旱环境中萌发的作用,在室内控制条件下研究了粘液物质的吸水保水特性、剥离粘液物质的种子(无粘液种子)和保留粘液物质的种子(粘液种子)在-1.15^-0.15MPa不同渗透胁迫条件下的萌发状况。结果表明:(1)小车前种子表面的粘液物质干重占粘液种子干重的5.6%;在去离子水中,粘液物质可以吸收相当于其自身干重217.1倍的水分;粘液物质的存在使得小车前种子的吸水倍数由2倍增加至14倍,从而保证为种子萌发提供充足的水分;(2)干燥的粘液种子吸水2h后即达到饱和,而吸水饱和后的粘液种子在室温下晾置,经过48h后又干燥失水恢复至原重;(3)在去离子水中或低渗透胁迫(-0.33^-0.15MPa)条件下,粘液物质吸水作用能促进小车前种子萌发,粘液种子3d的发芽势和10d的总萌发率均显著高于无粘液种子;在高渗透胁迫(-1.15^-0.73MPa)条件下,粘液种子3d的发芽势显著低于无粘液种子的,而10d的总萌发率与无粘液种子的没有显著差别,表明粘液物质在干旱条件下可能从种子而非外界环境中吸取水分,减缓了种子萌发速率。通过上述结果可以认为小车前种子表面的粘液物质在早春干湿交替剧烈的荒漠生境中起到通过调节水分来调节种子萌发的作用,这种萌发策略大大降低了因大批种子同时萌发导致幼苗受旱甚至种群灭亡的潜在风险。
基金supported by grants from the National Natural Science Foundation of China (Grant No.31160277)the Ministry of Science and Technology of China (Grant No. 2010AA101803)+2 种基金the Ministry of Agriculture of China (Grant No. 2011ZX08001-001)the Guangxi Science and Technology Department,China (Grant No. 10100005-8,2012GXNSFAA053056)the Guangxi Academy of Agricultural Sciences,China (Grant No. 2011JZ02 2011JM02,12-071-09)
文摘Introgression line population is effectively used in mapping quantitative trait loci(QTLs),identifying favorable genes,discovering hidden genetic variation,evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research.In this study,an advanced backcross and consecutive selfing strategy was used to develop introgression lines(ILs),which derived from an accession of Oryza minuta(accession No.101133) with BBCC genome,as the donor,and an elite indica cultivar IR24(O.sativa),as the recipient.Introgression segments from O.minuta were screened using 164 polymorphic simple sequence repeat(SSR) markers in the genome of each IL.Introgressed segments carried by 131 ILs covered the whole O.sativa genome.The average number of homozygous O.minuta segments per introgression line was about 9.99.The average length of introgressed segments was approximate 14.78 cM,and about 79.64% of these segments had sizes less than 20 cM.In the genome of each introgression line,the O.minuta chromosomal segments harbored chromosomal fragments of O.sativa ranging from 1.15% to 27.6%,with an overall average of 8.57%.At each locus,the ratio of substitution of O.minuta alleles had a range of 1.5% 25.2%,with an average of 8.3%.Based on the evaluation of the phenotype of these ILs,a wide range of alterations in morphological and yield-related traits were found.After inoculation,ILs 41,11 and 7 showed high resistance to bacterial blight,brown planthopper and whitebacked planthopper,respectively.These O.minuta-O.sativa ILs will serve as genetic materials for identifying and using favorable genes from O.minuta.
基金Supported by the funding from Shiraz University(Grant no.88GR-AGRST-108)Shiraz University of Medical Science(Grant No.3937)
文摘Objective:To investigate antioxidant and anti-inflammatory effects of Tagetes minuta(T.minuta)essential oil.Methods:In the present study T.minuta essential oil was obtained from leaves of T.minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry.The antioxidant capacity of T.minuta essential oil was examined by measuring reactive oxygen,reactive nitrogen species and hydrogen peroxide scavenging.The anti-inflammatory activity of T.minuta essential oil was determined through measuring NADH oxidase,inducible nitric oxide synthase and TNF-αmRNA expression in lipopolysacharide-stimulated murine macrophages using realtime PCR.Results:Gas chromatography-mass spectrometry analysis indicated that the main components in the T.minuta essential oil were dihydrotagetone(33.86%),E-ocimene(19.92%).tagetone(16.15%),cis-β-ocimene(7.94%),Z-ocimene(5.27%).limonene(3.1%)and epoxyocimene(2.03%).The T.minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC_(50)12-15μg/mL,which indicated a potent radical scavenging activity.In addition,T.minuta essential oil significantly reduced NADH oxidase,inducible nitric oxide synthaseand TNF-αmRNA expression in the cells at concentrations of 50μg/mL,indicating a capacity of this product to potentially modulate/diminish immune responses.Conclusions:T.minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions.
基金The work was supported by National High Technology Development Program of China(Z16-02-01-02).
文摘To transfer desirable resistance traits from O. minuta to O. sativa, intergeneric hybrid plants between O. sativa (AA, 2n=2X=24) and O. minuta (BBCC, 2n=4X=48) were produced by embryo rescue after sexual cross. Morphological observation and chromosome counts indicated their hybrid status (ABC, 2n=3X=36). Genomic in situ hybridization (GISH) was further applied to confirm the parentage of the chromosomes of F 1 hybrids. Chromosomes of O. minuta and O. sativa were distinguishable in the hybrids in different fluorescence colors. GISH indicated that A and BC chromosomes were not randomly assembled in a cell. RAPD profiles unequivocally revealed their hybrids with double parent patterns. The results of blast tests showed that the hybrids had obtained disease resistance from O. minuta, and had a level of susceptibility between the parents.
基金funded by the Foundation for University Key Teacher by Henan Educational Committee (2013GGJS070)the National Basic Research Program of China (2014CB954202)+1 种基金the National Natural Science Foundation of China (40971150)the China Scholarship Council (201208410020)
文摘Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(AM fungi) are widely reported to improve the growth of desert ephemerals.The present study aimed to test the hypothesis of that AM fungi could alleviate drought stress of desert ephemeral Plantago minuta,and AM fungal functions reduced with the improvement of soil water content.A pot experiment was carried out with three levels of soil water contents(4.5%,9.0%,and 15.8%(w/w)),and three AM inoculation treatments(Glomus mosseae,Glomus etunicatum and non-inoculation).The results indicate that mycorrhizal colonization rate decreased with the increase of soil water availability.Inoculation improved plant growth and N,P and K acquisition in both shoots and roots regardless water treatments.When comparing the two fungi,plants inoculated with G.mosseae performed better than those inoculated with G.etunicatum in terms of plant growth and nutrient acquisition.These results showed that ameliorative soil water did not suppress arbuscular mycorrhizal fungal functions in improving growth and nutrient acquisition of desert ephemeral Plantago minuta.
文摘Objective:To evaluate in vitro effects of Tagetes minuta L. essential oil(TEO) on L3 Anisakis larvae type 1. Methods:In order to evaluate the potential use of Tagetes minuta essential oil against L3 Anisakis larvae three different media were tested:1) a saline solution(SS); 2) an industrial marinating solution; 3) sunflower seeds oil(SO). For each media and concentrations of TEO(0.1%,0.5%,1.0% and 5.0% v/v),20 parasites were introduced into plastic Petri dishes(diameter 90 mm) and maintained at room temperature. As controls,larvae were maintained without TEO under identical experimental conditions in SS,MS and SO. A total of 900 larvae were tested. The normalized mean viability,LT100,LT50 and the percentage of inactivation at 24 hours were calculated. Results:In vitro tests revealed a complete inactivation of parasites in saline solution after 2 hours with 5% and 1% of TEO. In marinating solution,a complete inactivation of parasites was observed after 4 hours at all concentrations used. A slower activity for all TEO concentration was reported in SO. Conclusions:The results obtained,showing a strong activity against Anisakis larvae,confirm TEO as a larvicidal agent in the treatment of human anisakidosis and in the industrial marinating process.
文摘In a hydroponic based experiment, the Cd toxicity is monitored with some cellular responses of Marsilea plant. Initially, plants were grown under varying concentrations (0, 50, 100 and 200 μM of Cd) of cadmium (Cd) with supplementation of 2 mM spermidine (Spd). The oxidative stress developed by Cd overaccumulation was measured with fall in Relative Growth Rate (RGR) by 27.11% to 59.83% growth reduction over control under varying Cd treatments. The retrieval of RGR was recovered by 1.59 folds as compared to the highest concentration of Cd (200 μM) when plants were fed with Spd. A concomitant degradation of chlorophyll was recorded in dose-dependant manner, however, the retrieval was not much pronounced with Spd. On the contrary, the non-oxidant thiol had borne more clarity with ongoing Cd concentration and appeared to be 40.51% increase maximally for GSH: GSSG at the highest concentration of Cd. Spd has minimized the ratio by 27.4%. The recovery of osmotic turgidity was indexed with a sharp rise in glycine betaine by 3.86 folds maximum at the highest concentration of Cd over control which declined by 30.9% with Spd. Another cellular response of treated plants was more evident from their isozymic profiles with regard to superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX). The intensity of protein expression was significantly variable but not in band numbers as evident from Cd treated plants. In vitro enzyme assay of catalase showed as declining trend within the limit of 33.13% to 43.22% which was reported by 1.45 folds when Spd was applied. Therefore, from the present study, the cellular responses of Marsilea plant which showed compatibility for their expression with Cd toxicity could be hypothesized as a case of bioindication.
文摘Evaluation of O. minuta for the re-sistance to the brown planthopper(BPH), Nilaparvata lugens (Stl)was carried out by using ModifiedSeedbox Screening Technique(MSST) . Based on the significtmtdifferences between O. minuta,E13-9, and the susceptible check