This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s...Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.展开更多
The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount o...The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.展开更多
When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Tak...When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.展开更多
A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condi...A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of nonstop machine. It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method, and experi ments are extensively carried out with a laboratory test rig. Both the simulation and experimental re suits basically agree well in that, the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the plitude of one time running speed component bration has been basically eliminated. entire rotor system. Experimental results show the am decreases by 30% , and the two time running speed vibration has been basically eliminated.展开更多
Based on the structural and mechanics analysis of aero-engines rotor system, the dynamic model of the flexible rotor system with multi-supports are presented in order to solve the bearing misalignment problem of rotor...Based on the structural and mechanics analysis of aero-engines rotor system, the dynamic model of the flexible rotor system with multi-supports are presented in order to solve the bearing misalignment problem of rotor system in aero-engines. The motion equations are derived through Lagrange method. The relationship between structural and mechanics characteristics parameters are built up. Finally, the dynamic influence of bearing misalignment on rotor system are divided into three kinds: additional rotor bending rigidity, additional bearing misalignment excitation force and additional imbalance. The equations suggest that additional imbalance excitation force activates the nonlinearity on rotor system and an additional 2x excitation force might appear.展开更多
To study the misalignment of gear coupling, this paper analyzed the distortion of the tooth of gear coupling on the base of gear coupling’s motion under parallel misalignment, and derived the specific expression of a...To study the misalignment of gear coupling, this paper analyzed the distortion of the tooth of gear coupling on the base of gear coupling’s motion under parallel misalignment, and derived the specific expression of additive radial force, which produced by the rotor’ torque. The motion differential equations of the large increased pressure wind tunnel rotor-gear coupling system were derived by the finite element method. Newmark integral method was applied to calculate the dynamic response of the system with parallel misalignment. The numerical results show that: under the effect of additive radial force, the static misalignment can arouse 2X frequency component lateral vibration; the dynamic misalignment can arouse2X,4X,6X multiple frequency components lateral vibration. The 2X frequency component is obvious. The additive radial force of the gear coupling can arouse lateral vibration with even multiple frequency components.展开更多
为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连...为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连接松动故障的振动特性敏感性更高,轴系的振动信号对转子故障的振动特性敏感性更高;转子不平衡故障和转子不对中故障表现出不同的频谱特征,转子不平衡故障的频谱特征表现为1倍振动主要频率(amplitude power frequency,APF)幅值增大,且随着故障程度的增加,幅值呈现了逐渐减小的趋势,转子不对中故障的频谱特征表现为产生新的振动特征频率2APF,且随着故障程度的增大,信号幅值逐渐增大;支座连接松动故障表现为频谱图中的主频变为3APF,并出现新的2APF和1/2分数谐波频率.展开更多
Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation me...Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation mechanism, cause overproof or non-uniform tip clearances. However, it is generally accepted that tip clearances are difficult to predict, even under assembly state. In this paper, a tip clearance prediction model is proposed based on measured error data. Some 3 D error propagation sub-models, regarding rotors, supports and casings, are built and combined. The complex error coupling relationship is uncovered using mathematical methods. Rotor and stator tip clearances are predicted and analyzed in different phase angles. The maximum, minimum and average tip clearances can be calculated. The proposed model is implemented by a computer program,and a case study illustrates its performance and verifies its feasibility. The results can be referred by engineers in assembly quality judgement and decision-making.展开更多
Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dam...Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration.展开更多
Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The pa...Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
文摘Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. ZJG0704)
文摘The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.
基金Project supported by National Basic Research Program(973 Program)of China(No.2015CB057400)
文摘When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.
基金Supported by the National Basic Research Program of China(No.2012CB026000)the Joint Project Special Fund of Education Committee of Beijingthe Ph.D.Programs Foundation of Ministry of Education of China(No.20110010110009)
文摘A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of nonstop machine. It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method, and experi ments are extensively carried out with a laboratory test rig. Both the simulation and experimental re suits basically agree well in that, the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the plitude of one time running speed component bration has been basically eliminated. entire rotor system. Experimental results show the am decreases by 30% , and the two time running speed vibration has been basically eliminated.
文摘Based on the structural and mechanics analysis of aero-engines rotor system, the dynamic model of the flexible rotor system with multi-supports are presented in order to solve the bearing misalignment problem of rotor system in aero-engines. The motion equations are derived through Lagrange method. The relationship between structural and mechanics characteristics parameters are built up. Finally, the dynamic influence of bearing misalignment on rotor system are divided into three kinds: additional rotor bending rigidity, additional bearing misalignment excitation force and additional imbalance. The equations suggest that additional imbalance excitation force activates the nonlinearity on rotor system and an additional 2x excitation force might appear.
基金Sponsored by the National Natural Science Foundation of China(Grant No50435010)
文摘To study the misalignment of gear coupling, this paper analyzed the distortion of the tooth of gear coupling on the base of gear coupling’s motion under parallel misalignment, and derived the specific expression of additive radial force, which produced by the rotor’ torque. The motion differential equations of the large increased pressure wind tunnel rotor-gear coupling system were derived by the finite element method. Newmark integral method was applied to calculate the dynamic response of the system with parallel misalignment. The numerical results show that: under the effect of additive radial force, the static misalignment can arouse 2X frequency component lateral vibration; the dynamic misalignment can arouse2X,4X,6X multiple frequency components lateral vibration. The 2X frequency component is obvious. The additive radial force of the gear coupling can arouse lateral vibration with even multiple frequency components.
文摘为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连接松动故障的振动特性敏感性更高,轴系的振动信号对转子故障的振动特性敏感性更高;转子不平衡故障和转子不对中故障表现出不同的频谱特征,转子不平衡故障的频谱特征表现为1倍振动主要频率(amplitude power frequency,APF)幅值增大,且随着故障程度的增加,幅值呈现了逐渐减小的趋势,转子不对中故障的频谱特征表现为产生新的振动特征频率2APF,且随着故障程度的增大,信号幅值逐渐增大;支座连接松动故障表现为频谱图中的主频变为3APF,并出现新的2APF和1/2分数谐波频率.
基金co-supported by the Equipment Pre-Research Foundation (No. 61409230204)the National Basic Research Project (No. 2017-VII-0010-0104)+2 种基金the Defense Industrial Technology Development Program (No. XXXX2018213A001)the National Natural Science Foundation of China(No. 51875475)the Key Development Program of Shaanxi Province (Nos. 2018ZDXM-GY-068 and 2016KTZDGY4-02)。
文摘Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation mechanism, cause overproof or non-uniform tip clearances. However, it is generally accepted that tip clearances are difficult to predict, even under assembly state. In this paper, a tip clearance prediction model is proposed based on measured error data. Some 3 D error propagation sub-models, regarding rotors, supports and casings, are built and combined. The complex error coupling relationship is uncovered using mathematical methods. Rotor and stator tip clearances are predicted and analyzed in different phase angles. The maximum, minimum and average tip clearances can be calculated. The proposed model is implemented by a computer program,and a case study illustrates its performance and verifies its feasibility. The results can be referred by engineers in assembly quality judgement and decision-making.
基金the National Key Basic Research Program of China(No.2015CB057400)the National Natural Science Foundation of China(Nos.11672201 and 11872045)the Major Special Basic Research Projects for Aeroengines and Gas Turbines(No.2017-IV-0008-0045)。
文摘Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration.
基金the financial support from the National Natural Science Foundation of China(Nos.51575022 and 51475021)
文摘Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.
基金Project(2021YFB2011100)supported by the National Key Research and Development Program of ChinaProject(2020YFB2007802)supported by the National Key Research and Development Program of ChinaProject(11972112)supported by the National Natural Science Foundation of China。