The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper in...The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.展开更多
In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) ...In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.展开更多
Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexi...Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.展开更多
基金Supported by the National Natural Science Foundation of China (No. 61071165)the Aviation Science Foundation (No. 20102052024)
文摘The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.
基金supported by the National Natural Science Foundation of China (61102143)the Fundamentl Research Funds for the Central Universities (ZYGX2011x003)
文摘In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.
基金supported by the National Natural Science Foundation of China(6100121161303035+1 种基金61471283)the Fundamental Research Funds for the Central Universities(K5051202016)
文摘Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.