Designing a multi-constrained QoS (Quality of service) communication protocol for mission-critical applications that seeks a path connecting source node and destination node that satisfies multiple QoS constrains such...Designing a multi-constrained QoS (Quality of service) communication protocol for mission-critical applications that seeks a path connecting source node and destination node that satisfies multiple QoS constrains such as energy cost, delay, and reliability imposes a great challenge in Wireless Sensor Networks (WSNs). In such challenging dynamic environment, traditional routing and layered infrastructure are inefficient and sometimes even infeasible. In recent research works, the opportunistic routing paradigm which delays the forwarding decision until reception of packets in forwarders by utilizing the broadcast nature of the wireless medium has been exploited to overcome the limitations of traditional routing. However, to guarantee the balance between the energy, delay and reliability requires the refinement of opportunistic routing through interaction between underlying layers known as cross-layer opportunistic routing. Indeed, these schemes fail to achieve optimal performance and hence require a new method to facilitate the adoption of the routing protocol to the dynamic challenging environments. In this paper, we propose a universal cross-layered opportunistic based communication protocol for WSNs for guaranteeing the user set constraints on multi-constrained QoS in low-duty-cycle WSN. Extensive simulation results show that the proposed work, Multi-Constrained QoS Opportunistic routing by optimal Power Tuning (MOR-PT) effectively achieves the feasible QoS trade-off constraints set by user by jointly considering the power control and selection diversity over established algorithms like DSF [1] and DTPC [2].展开更多
文摘Designing a multi-constrained QoS (Quality of service) communication protocol for mission-critical applications that seeks a path connecting source node and destination node that satisfies multiple QoS constrains such as energy cost, delay, and reliability imposes a great challenge in Wireless Sensor Networks (WSNs). In such challenging dynamic environment, traditional routing and layered infrastructure are inefficient and sometimes even infeasible. In recent research works, the opportunistic routing paradigm which delays the forwarding decision until reception of packets in forwarders by utilizing the broadcast nature of the wireless medium has been exploited to overcome the limitations of traditional routing. However, to guarantee the balance between the energy, delay and reliability requires the refinement of opportunistic routing through interaction between underlying layers known as cross-layer opportunistic routing. Indeed, these schemes fail to achieve optimal performance and hence require a new method to facilitate the adoption of the routing protocol to the dynamic challenging environments. In this paper, we propose a universal cross-layered opportunistic based communication protocol for WSNs for guaranteeing the user set constraints on multi-constrained QoS in low-duty-cycle WSN. Extensive simulation results show that the proposed work, Multi-Constrained QoS Opportunistic routing by optimal Power Tuning (MOR-PT) effectively achieves the feasible QoS trade-off constraints set by user by jointly considering the power control and selection diversity over established algorithms like DSF [1] and DTPC [2].