As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or ...As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.展开更多
This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus...This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel-lite’s altitude. Final y, a flight planning schedule for the satel ite is demonstrated from its launch into the initial altitude at the very beginning to its decay to death in the end.展开更多
Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar park...Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar parking orbit. Once the landing area has been selected and it is time to deorbit for landing, a ΔV burn of 19.4 m/s is performed to establish a 100×15 km elliptical orbit. At perilune, the landing jets are ignited, and a propulsive landing is performed. A guidance and control scheme for lunar soft landing is proposed in the paper, which combines optimal theory with nonlinear neuro-control. Basically, an optimal nonlinear control law based on artificial neural network is presented, on the basis of the optimum trajectory from perilune to lunar surface in terms of Pontryagin's maximum principle according to the terminal boundary conditions and performance index. Therefore some optimal control laws can be carried out in the soft landing system due to the nonlinear mapping function of the neural network. The feasibility and validity of the control laws are verified in a simulation experiment.展开更多
哈勃空间望远镜(Hubble Space Telescope,HST)作为首个大型且复杂的在轨空间天文观测站,其成功运行离不开NASA的主导及多个控制中心与机构的协同努力。深入探讨了哈勃任务的多机构协同管理模式,详细分析了运控中心飞行操作人员的构成及...哈勃空间望远镜(Hubble Space Telescope,HST)作为首个大型且复杂的在轨空间天文观测站,其成功运行离不开NASA的主导及多个控制中心与机构的协同努力。深入探讨了哈勃任务的多机构协同管理模式,详细分析了运控中心飞行操作人员的构成及其执行的典型操控活动。同时,针对HST的数据上下行处理及转发测控模式进行了分析,并研究了其地面软件系统的架构及其自任务实施以来的升级改造情况。全面分析了哈勃开展天文观测任务的全规划流程及周期规划模式。基于哈勃任务的成功实施经验,为我国未来开展空间望远镜任务提供了具体且有益的启示。展开更多
Recently, if you look at the trend of the Unmanned Combat Entities (UCE) on the world that are actually operational, a large number of personnel per one UCE has been operating the GCS. However, UCEs to perform the att...Recently, if you look at the trend of the Unmanned Combat Entities (UCE) on the world that are actually operational, a large number of personnel per one UCE has been operating the GCS. However, UCEs to perform the attack/reconnaissance mission are very expensive assets and require a considerable amount of time to train for UCE operations. Accordingly, the future battlefield environment has become important to develop multiple UCE ground control station. In this study, we developed a multiple UCE GCS that one operator can operate up to four UCEs. The software was built with a total of 6 displays using a Lockheed Martin Corporation’s prepar3D. Scenario of research takes into account the operation of the South Korea-type future multiple UCEs, to take advantage of the simulation system, in this paper, we propose for each of the concepts and technologies.展开更多
基金supported in part by the Project of National Natural Science Foundation of China (61301110)Project of Shanghai Key Laboratory of Intelligent Information Processing, China [grant number IIPL-2014-005]+1 种基金the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Project of Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-Aged Teachers and Presidents
文摘As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.
基金supported by the National Natural Science Foundation of China(11172020)the Fundamental Research Funds for the Central Universities+1 种基金the Aerospace Science and Technology Innovation Foundation of China Aerospace Science Corporationthe Innovation Fund of China Academy of Space Technology
文摘This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel-lite’s altitude. Final y, a flight planning schedule for the satel ite is demonstrated from its launch into the initial altitude at the very beginning to its decay to death in the end.
文摘Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar parking orbit. Once the landing area has been selected and it is time to deorbit for landing, a ΔV burn of 19.4 m/s is performed to establish a 100×15 km elliptical orbit. At perilune, the landing jets are ignited, and a propulsive landing is performed. A guidance and control scheme for lunar soft landing is proposed in the paper, which combines optimal theory with nonlinear neuro-control. Basically, an optimal nonlinear control law based on artificial neural network is presented, on the basis of the optimum trajectory from perilune to lunar surface in terms of Pontryagin's maximum principle according to the terminal boundary conditions and performance index. Therefore some optimal control laws can be carried out in the soft landing system due to the nonlinear mapping function of the neural network. The feasibility and validity of the control laws are verified in a simulation experiment.
文摘哈勃空间望远镜(Hubble Space Telescope,HST)作为首个大型且复杂的在轨空间天文观测站,其成功运行离不开NASA的主导及多个控制中心与机构的协同努力。深入探讨了哈勃任务的多机构协同管理模式,详细分析了运控中心飞行操作人员的构成及其执行的典型操控活动。同时,针对HST的数据上下行处理及转发测控模式进行了分析,并研究了其地面软件系统的架构及其自任务实施以来的升级改造情况。全面分析了哈勃开展天文观测任务的全规划流程及周期规划模式。基于哈勃任务的成功实施经验,为我国未来开展空间望远镜任务提供了具体且有益的启示。
文摘Recently, if you look at the trend of the Unmanned Combat Entities (UCE) on the world that are actually operational, a large number of personnel per one UCE has been operating the GCS. However, UCEs to perform the attack/reconnaissance mission are very expensive assets and require a considerable amount of time to train for UCE operations. Accordingly, the future battlefield environment has become important to develop multiple UCE ground control station. In this study, we developed a multiple UCE GCS that one operator can operate up to four UCEs. The software was built with a total of 6 displays using a Lockheed Martin Corporation’s prepar3D. Scenario of research takes into account the operation of the South Korea-type future multiple UCEs, to take advantage of the simulation system, in this paper, we propose for each of the concepts and technologies.