对敌防空压制(suppression of enemy air defenses, SEAD)场景是多无人机协同的典型应用,针对该场景特点,在任务规划问题基础上将各类型无人机数量也作为决策变量,充分表征目标、任务和无人机的多种约束,建立异构无人机编队路径问题模...对敌防空压制(suppression of enemy air defenses, SEAD)场景是多无人机协同的典型应用,针对该场景特点,在任务规划问题基础上将各类型无人机数量也作为决策变量,充分表征目标、任务和无人机的多种约束,建立异构无人机编队路径问题模型。设计了双层联合优化方法求解该模型:上层设计了任务衔接参数指标,精确评估各类型无人机需求,指导无人机配置调整;下层设计了改进遗传算法,高效处理多类型约束并能结合无人机数量变化对任务方案进行精细调整;双层相互协调获得满足需求的无人机配置和执行方案。仿真结果表明,该方法可以在避免遍历无人机配置组合的前提下获得合理的无人机配置方案和高效可行的执行方案。展开更多
A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damag...A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.展开更多
提出了基于确定与随机Petri网(deterministic and stochastic Petri nets,DSPN)的航天测控系统(tracking,telemetry and command,TT&C)任务可靠性定量分析方法,旨在对相关航天测控方案进行可靠性预计.通过对TT&C系统任务剖面进...提出了基于确定与随机Petri网(deterministic and stochastic Petri nets,DSPN)的航天测控系统(tracking,telemetry and command,TT&C)任务可靠性定量分析方法,旨在对相关航天测控方案进行可靠性预计.通过对TT&C系统任务剖面进行时序弧段划分,考虑实际系统中测控单元阶段依赖、单元故障可修以及各单元参与任务起止时间不同等其他建模方法难以处理的复杂因素,建立了"单元层-系统逻辑层-阶段层"3层相互关联的TT&C系统任务可靠性DSPN模型.通过对模型仿真运行,实现了对给定测控方案下TT&C系统任务可靠性定量化评估.分析表明:仿真结果随着仿真次数增加逐渐收敛,与Markov解析方法求得的精确值对比误差控制在1%以内.展开更多
文摘对敌防空压制(suppression of enemy air defenses, SEAD)场景是多无人机协同的典型应用,针对该场景特点,在任务规划问题基础上将各类型无人机数量也作为决策变量,充分表征目标、任务和无人机的多种约束,建立异构无人机编队路径问题模型。设计了双层联合优化方法求解该模型:上层设计了任务衔接参数指标,精确评估各类型无人机需求,指导无人机配置调整;下层设计了改进遗传算法,高效处理多类型约束并能结合无人机数量变化对任务方案进行精细调整;双层相互协调获得满足需求的无人机配置和执行方案。仿真结果表明,该方法可以在避免遍历无人机配置组合的前提下获得合理的无人机配置方案和高效可行的执行方案。
文摘A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.
文摘提出了基于确定与随机Petri网(deterministic and stochastic Petri nets,DSPN)的航天测控系统(tracking,telemetry and command,TT&C)任务可靠性定量分析方法,旨在对相关航天测控方案进行可靠性预计.通过对TT&C系统任务剖面进行时序弧段划分,考虑实际系统中测控单元阶段依赖、单元故障可修以及各单元参与任务起止时间不同等其他建模方法难以处理的复杂因素,建立了"单元层-系统逻辑层-阶段层"3层相互关联的TT&C系统任务可靠性DSPN模型.通过对模型仿真运行,实现了对给定测控方案下TT&C系统任务可靠性定量化评估.分析表明:仿真结果随着仿真次数增加逐渐收敛,与Markov解析方法求得的精确值对比误差控制在1%以内.