期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Reinforcement Learning Behavioral Control for Nonlinear Autonomous System 被引量:2
1
作者 Zhenyi Zhang Zhibin Mo +1 位作者 Yutao Chen Jie Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第9期1561-1573,共13页
Behavior-based autonomous systems rely on human intelligence to resolve multi-mission conflicts by designing mission priority rules and nonlinear controllers.In this work,a novel twolayer reinforcement learning behavi... Behavior-based autonomous systems rely on human intelligence to resolve multi-mission conflicts by designing mission priority rules and nonlinear controllers.In this work,a novel twolayer reinforcement learning behavioral control(RLBC)method is proposed to reduce such dependence by trial-and-error learning.Specifically,in the upper layer,a reinforcement learning mission supervisor(RLMS)is designed to learn the optimal mission priority.Compared with existing mission supervisors,the RLMS improves the dynamic performance of mission priority adjustment by maximizing cumulative rewards and reducing hardware storage demand when using neural networks.In the lower layer,a reinforcement learning controller(RLC)is designed to learn the optimal control policy.Compared with existing behavioral controllers,the RLC reduces the control cost of mission priority adjustment by balancing control performance and consumption.All error signals are proved to be semi-globally uniformly ultimately bounded(SGUUB).Simulation results show that the number of mission priority adjustment and the control cost are significantly reduced compared to some existing mission supervisors and behavioral controllers,respectively. 展开更多
关键词 Behavioral control mission supervisor nonlinear autonomous system reinforcement learning
下载PDF
研究生学术诚信教育中导师的使命与责任 被引量:4
2
作者 刘静 《高等建筑教育》 2010年第5期23-26,共4页
作为学术界未来的中坚力量,研究生能否坚守学术诚信将影响教育事业和社会风气。鉴于研究生培养实行导师负责制,因此,在研究生学术诚信教育中如何发挥导师的作用至关重要。导师可以从言传身教、创新观念、团结协作等方面履行其使命与责任。
关键词 研究生 诚信教育 导师 使命 责任
下载PDF
Multi-agent reinforcement learning behavioral control for nonlinear second-order systems
3
作者 Zhenyi ZHANG Jie HUANG Congjie PAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第6期869-886,共18页
Reinforcement learning behavioral control(RLBC)is limited to an individual agent without any swarm mission,because it models the behavior priority learning as a Markov decision process.In this paper,a novel multi-agen... Reinforcement learning behavioral control(RLBC)is limited to an individual agent without any swarm mission,because it models the behavior priority learning as a Markov decision process.In this paper,a novel multi-agent reinforcement learning behavioral control(MARLBC)method is proposed to overcome such limitations by implementing joint learning.Specifically,a multi-agent reinforcement learning mission supervisor(MARLMS)is designed for a group of nonlinear second-order systems to assign the behavior priorities at the decision layer.Through modeling behavior priority switching as a cooperative Markov game,the MARLMS learns an optimal joint behavior priority to reduce dependence on human intelligence and high-performance computing hardware.At the control layer,a group of second-order reinforcement learning controllers are designed to learn the optimal control policies to track position and velocity signals simultaneously.In particular,input saturation constraints are strictly implemented via designing a group of adaptive compensators.Numerical simulation results show that the proposed MARLBC has a lower switching frequency and control cost than finite-time and fixed-time behavioral control and RLBC methods. 展开更多
关键词 Reinforcement learning Behavioral control Second-order systems mission supervisor
原文传递
基于行为的多差速机器人强化学习任务监管器设计
4
作者 张祯毅 黄捷 《机器人》 EI CSCD 北大核心 2024年第4期397-413,424,共18页
针对多差速机器人系统提出了一种基于试错学习的多智能体强化学习任务监管器。此方法解决了基于行为的多智能体系统总是依赖人的智能设计切换规则以决策行为优先级的问题。首先,在零空间行为控制框架下引入了差速模型代替质点模型,首次... 针对多差速机器人系统提出了一种基于试错学习的多智能体强化学习任务监管器。此方法解决了基于行为的多智能体系统总是依赖人的智能设计切换规则以决策行为优先级的问题。首先,在零空间行为控制框架下引入了差速模型代替质点模型,首次推导了具有非完整约束的零空间行为控制范式,从而提升了系统对最小极值状态的鲁棒性。然后,首次将行为优先级切换问题建模为协作式马尔可夫博弈问题,学习了一个最优的联合策略以动态且智能地决策行为优先级,不仅避免了人工设计切换规则,而且降低了在线计算和存储负担。仿真结果显示,所提出多智能体强化学习任务监管器具有优越的行为优先级切换性能。在AgileX Limo系列多差速机器人系统上的成功应用,验证了该任务监管器的实用性。 展开更多
关键词 差速机器人 行为控制 强化学习 任务监管器 智能决策
原文传递
浅谈民办高校的班级管理与班风建设 被引量:2
5
作者 黄彦明 《吉林华桥外国语学院学报》 2007年第1期50-53,共4页
如何培养具有创新精神和实践能力的全面发展的学生,是摆在每一位教育者,尤其辅导员老师面前的一项重要任务和课题。班风好坏,反映了辅导员的工作作风、责任精神、工作能力及性格特征,它是一个班级教育质量和管理水平的综合表现。本文详... 如何培养具有创新精神和实践能力的全面发展的学生,是摆在每一位教育者,尤其辅导员老师面前的一项重要任务和课题。班风好坏,反映了辅导员的工作作风、责任精神、工作能力及性格特征,它是一个班级教育质量和管理水平的综合表现。本文详尽论述了良好班风的形成过程,阐明了班级管理,营造良好学习氛围的重要性。 展开更多
关键词 辅导员 班风建设 重要任务
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部