Distributed secondary control,depending on the sparse communication topology,excels for its flexibility and expandability in microgrids.The communication network plays an important role in microgrid control,but it is ...Distributed secondary control,depending on the sparse communication topology,excels for its flexibility and expandability in microgrids.The communication network plays an important role in microgrid control,but it is vulnerable to cyber-attacks.In this paper,the mathematical model for false data injection(FDI)attacks in AC microgrids is established,and the corresponding detection mechanism based on the morphological gradient is designed for the location of cyber-attacks in communication topology.Then,we propose a median-based resilient consensus voltage control strategy to mitigate the negative effects caused by malicious cyber-attacks and ensure the safe operation of the microgrid.Combining the detection method and resilient consensus control,a novel eventdriven mitigation scheme is derived to improve the resilience of microgrids under cyber-attacks.Finally,a tested microgrid model composed of five different distributed generation(DG)units is simulated in the MATLAB/Simulink environment.The feasibility and effectiveness of the presented detection mechanism and resilient consensus strategy are verified by simulation results applying different scenarios.展开更多
Airborne silicate pollutants in flight corridors pose a serious threat to aviation safety whose severity is directly linked to the wettability of molten silicates on thermal barrier coatings(TBCs)at high temperatures(...Airborne silicate pollutants in flight corridors pose a serious threat to aviation safety whose severity is directly linked to the wettability of molten silicates on thermal barrier coatings(TBCs)at high temperatures(1200–2000℃).Despite its importance,the wettability of silicate melt on TBCs has not been well investigated.In particular,the surface morphology characteristics of TBCs can be expected to have a first-order effect on the wettability of silicate melt on such TBCs.Here,a series of atmospheric plasma spray(APS)yttria-stabilized zirconia(YSZ)TBCs with varying surface roughness were generated through the application of mechanical polishing.The metastable nonwetting behavior of three representative types of airborne silicate ash(volcanic ash,fly ash and a synthetic calcium–magnesium–aluminum–silicates(CMAS)powder)on these TBCs with varying surface roughness was investigated.It was observed that the smoother the surface of TBCs was,the larger the contact angle was with the molten silicate melts,and consequently,the smaller the area of damage was on the TBCs.Thus,the reduction in TBCs surface roughness(here via mechanical polishing)led to an improvement in the wetting and spreading resistance of TBCs to silicate melts at high temperature.In support of these observations and conclusions,the surface morphology of the TBC(both before and after polishing)had been characterized,and the mechanism of the surface roughness-dependence of wettability had been discussed.These results should contribute to reducing the deposition rate of silicate melt on TBCs,thus extending the lifetime of turbine blades and reducing maintenance costs.展开更多
Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfor...Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfortunately,no studies have been conducted on the pseudorange biases of the BeiDou navigation satellite system(BDS).To mitigate the effects of pseudorange biases on the BDS performance to the greatest extent possible,the origin of such BDS pseudorange biases are first thoroughly illustrated,based upon which the dependency of the biases on the receiver configurations are studied in detail.Owing to the limitations regarding the parameter re-settings for hardware receivers,software receiver technology was used to achieve the ergodicity of the receiver parameters,such as the correlator spacing and front-end bandwidth,using high-fidelity signal observations collected by a 40-m-high gain dish antenna at Haoping Observatory.Based on this,the pseudorange biases of the BDS B1I and B3I signals and their dependency on different correlator spacings and front-end bandwidths were adequately provided.Finally,herein,the suggested settings of the correlator spacing and front-end bandwidth for BDS receivers are in detail proposed for the first time.As a result,the pseudorange biases of the BDS signals will be less than 20 cm,reaching even under 10 cm,under this condition.This study will provide special attention to GNSS pseudorange biases,and will significantly promote a clear definition of the appropriate receiver parameter settings in the interface control documents of BDS and other individual satellite systems.展开更多
We used the interdisciplinary model network REGFLUD to predict the actual mean nitrate concentration in percolation water at the scale of the Weser river basin (Germany) using an area differentiated (100 m × 1...We used the interdisciplinary model network REGFLUD to predict the actual mean nitrate concentration in percolation water at the scale of the Weser river basin (Germany) using an area differentiated (100 m × 100 m) approach. REGFLUD combines the agro-economic model RAUMIS for estimating nitrogen surpluses and the hydrological models GROWA/DENUZ for assessing the nitrate leaching from the soil. For areas showing predicted nitrate concentrations in percolation water above the European Union (EU) groundwater quality standard of 50 mg NO3-N/L, effective agri-environmental reduction measures need to be derived and implemented to improve groundwater and surface water quality by 2015. The effects of already implemented agricultural policy are quantified by a baseline scenario projecting the N-surpluses from agricultural sector to 2015. The REGFLUD model is used to estimate the effects of this scenario concerning groundwater and surface water pollution by nitrate. From the results of the model analysis the needs for additional measures can be derived in terms of required additional N-surplus reduction and in terms of regional prioritization of measures. Research work will therefore directly support the implementation of the Water Framework Directive of the European Union in the Weser basin.展开更多
基金supported by the National Key Research and Development Program of China(2020YFE0200400)。
文摘Distributed secondary control,depending on the sparse communication topology,excels for its flexibility and expandability in microgrids.The communication network plays an important role in microgrid control,but it is vulnerable to cyber-attacks.In this paper,the mathematical model for false data injection(FDI)attacks in AC microgrids is established,and the corresponding detection mechanism based on the morphological gradient is designed for the location of cyber-attacks in communication topology.Then,we propose a median-based resilient consensus voltage control strategy to mitigate the negative effects caused by malicious cyber-attacks and ensure the safe operation of the microgrid.Combining the detection method and resilient consensus control,a novel eventdriven mitigation scheme is derived to improve the resilience of microgrids under cyber-attacks.Finally,a tested microgrid model composed of five different distributed generation(DG)units is simulated in the MATLAB/Simulink environment.The feasibility and effectiveness of the presented detection mechanism and resilient consensus strategy are verified by simulation results applying different scenarios.
基金This study was financially supported by the National Science and Technology Major Project(No.2017-VI-0010-0081)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B17002)+2 种基金the National Natural Science Foundation of China(No.51901011)the“Freigeist”Fellowship of the Volkswagenstiftung on“Volcanic Ash Deposition in Jet Engines”(VADJEs,No.89705)China Scholarship Council(CSC).
文摘Airborne silicate pollutants in flight corridors pose a serious threat to aviation safety whose severity is directly linked to the wettability of molten silicates on thermal barrier coatings(TBCs)at high temperatures(1200–2000℃).Despite its importance,the wettability of silicate melt on TBCs has not been well investigated.In particular,the surface morphology characteristics of TBCs can be expected to have a first-order effect on the wettability of silicate melt on such TBCs.Here,a series of atmospheric plasma spray(APS)yttria-stabilized zirconia(YSZ)TBCs with varying surface roughness were generated through the application of mechanical polishing.The metastable nonwetting behavior of three representative types of airborne silicate ash(volcanic ash,fly ash and a synthetic calcium–magnesium–aluminum–silicates(CMAS)powder)on these TBCs with varying surface roughness was investigated.It was observed that the smoother the surface of TBCs was,the larger the contact angle was with the molten silicate melts,and consequently,the smaller the area of damage was on the TBCs.Thus,the reduction in TBCs surface roughness(here via mechanical polishing)led to an improvement in the wetting and spreading resistance of TBCs to silicate melts at high temperature.In support of these observations and conclusions,the surface morphology of the TBC(both before and after polishing)had been characterized,and the mechanism of the surface roughness-dependence of wettability had been discussed.These results should contribute to reducing the deposition rate of silicate melt on TBCs,thus extending the lifetime of turbine blades and reducing maintenance costs.
基金the National Nature Science Foundation of China(Nos.61501430 and 41604029)the State Key Laboratory of Geo-information Engineering(SKLGIE2017-M-2-2)。
文摘Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfortunately,no studies have been conducted on the pseudorange biases of the BeiDou navigation satellite system(BDS).To mitigate the effects of pseudorange biases on the BDS performance to the greatest extent possible,the origin of such BDS pseudorange biases are first thoroughly illustrated,based upon which the dependency of the biases on the receiver configurations are studied in detail.Owing to the limitations regarding the parameter re-settings for hardware receivers,software receiver technology was used to achieve the ergodicity of the receiver parameters,such as the correlator spacing and front-end bandwidth,using high-fidelity signal observations collected by a 40-m-high gain dish antenna at Haoping Observatory.Based on this,the pseudorange biases of the BDS B1I and B3I signals and their dependency on different correlator spacings and front-end bandwidths were adequately provided.Finally,herein,the suggested settings of the correlator spacing and front-end bandwidth for BDS receivers are in detail proposed for the first time.As a result,the pseudorange biases of the BDS signals will be less than 20 cm,reaching even under 10 cm,under this condition.This study will provide special attention to GNSS pseudorange biases,and will significantly promote a clear definition of the appropriate receiver parameter settings in the interface control documents of BDS and other individual satellite systems.
基金The research work presented in this article is carried out in the framework of the AGRUM Weser project which was funded on behalf of the German Federal Ministry of Food,Agriculture and Consumer protection (BMELV) and the River Basin Commission Weser (FGG).
文摘We used the interdisciplinary model network REGFLUD to predict the actual mean nitrate concentration in percolation water at the scale of the Weser river basin (Germany) using an area differentiated (100 m × 100 m) approach. REGFLUD combines the agro-economic model RAUMIS for estimating nitrogen surpluses and the hydrological models GROWA/DENUZ for assessing the nitrate leaching from the soil. For areas showing predicted nitrate concentrations in percolation water above the European Union (EU) groundwater quality standard of 50 mg NO3-N/L, effective agri-environmental reduction measures need to be derived and implemented to improve groundwater and surface water quality by 2015. The effects of already implemented agricultural policy are quantified by a baseline scenario projecting the N-surpluses from agricultural sector to 2015. The REGFLUD model is used to estimate the effects of this scenario concerning groundwater and surface water pollution by nitrate. From the results of the model analysis the needs for additional measures can be derived in terms of required additional N-surplus reduction and in terms of regional prioritization of measures. Research work will therefore directly support the implementation of the Water Framework Directive of the European Union in the Weser basin.