The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio sign...The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio signals along long-reach passive optical networks (LR-PONs). Particularly, two different SSB ar- chitectures, namely, Sieben's architecture and four phase modulator (FPM) architecture are optimized to provide maximum sideband suppression. The minimum optical signal-to-noise ratio (OSNR) required to simultaneously distribute all the 14 OFDM-UWB sub-bands along the LR-PON distances ranging between 80 and 100 km is also evaluated through numerical simulation. FPM architecture is preferable over Sieben's architecture because the latter SSB architecture generates carriers-carriers beat term at the photodetector output with high power, thereby causing significant degradation in the OFDM-UWB sub-bands with lower central frequencies. The simultaneous distribution of the 14 SSB OFDM-UWB sub-bands in the LR-PON using the FPM architecture shows a minimum OSNR penalty of 3 dB compared with the centralized dis- persion compensation technique.展开更多
The Gulf Cooperation Countries have the advantages of fundamental characteristics and abundant natural resources due to the high proportion of solar radiation, which helps to expand the transition to renewable energy,...The Gulf Cooperation Countries have the advantages of fundamental characteristics and abundant natural resources due to the high proportion of solar radiation, which helps to expand the transition to renewable energy, especially in solar projects. The Kuwait location was chosen for this research because of its high dust levels and average daily sunshine of 9.4 hours. The soiling map of Kuwait was then created using PVsyst software. A theoretical and mathematical model for 100 MW was developed based on many environmental and technical parameters. The model was run with Kuwait parameters and 100 MW solar PV power plant capacity. The results show that more than 25% of total generated electricity could be lost annually without any mitigation strategy. Furthermore, the efficiency loss could increase by around 50% during the seasons with sandstorms and high soiling rates. Additionally, manual and automatic cleaning methods were found to increase energy production from 112,092 MWh to 207,300 MWh. Moreover, manual cleaning reduced energy costs by 4.9%, but automated cleaning resulted in a 17.34% higher energy-saving cost than a system without cleaning. In addition, when using the automatic cleaning system, the system’s payback period was reduced from 9.22 to 7.86 years. Therefore, an automated cleaning system is recommended for use in Kuwait.展开更多
This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with diffe...This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.展开更多
The accurate and efficient simulation of ocean circulation is a fundamental topic in marine science;however,it is also a well-known and dauntingly difficult problem that requires solving nonlinear partial differential...The accurate and efficient simulation of ocean circulation is a fundamental topic in marine science;however,it is also a well-known and dauntingly difficult problem that requires solving nonlinear partial differential equations with multiple variables.In this paper,we present for the first time an algorithm for simulating ocean circulation on a quantum computer to achieve a computational speedup.Our approach begins with using primitive equations describing the ocean dynamics and then discretizing these equations in time and space.It results in several linear system of equations(LSE)with sparse coefficient matrices.We solve these sparse LSE using the variational quantum linear solver that enables the present algorithm to run easily on near-term quantum computers.Additionally,we develop a scheme for manipulating the data flow in the algorithm based on the quantum random access memory and l∞norm tomography technique.The efficiency of our algorithm is verified using multiple platforms,including MATLAB,a quantum virtual simulator,and a real quantum computer.The impact of the number of shots and the noise of quantum gates on the solution accuracy is also discussed.Our findings demonstrate that error mitigation techniques can efficiently improve the solution accuracy.With the rapid advancements in quantum computing,this work represents an important first step toward solving the challenging problem of simulating ocean circulation using quantum computers.展开更多
A novel off-state gate RHBD technique to mitigate the single-event transient(SET)in the differential data path of analog circuit is demonstrated in this paper.Simulation results present that this off-state gate techni...A novel off-state gate RHBD technique to mitigate the single-event transient(SET)in the differential data path of analog circuit is demonstrated in this paper.Simulation results present that this off-state gate technique could exploit charge sharing in differential circuits and reduce differential mode voltage perturbation effectively.It is indicated that this technique is more effective to mitigate SET than the differential charge cancellation(DCC)technique with less penalty.展开更多
基金supported by Fundacao para a Cienciae a Tecnologia from Portugal under contract SFRH/BD/29871/2006 the project TURBO-PTDC/EEA-TEL/104358/2008supported in part by the European FIVER-FP7-ICT-2009-4-249142 project
文摘The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio signals along long-reach passive optical networks (LR-PONs). Particularly, two different SSB ar- chitectures, namely, Sieben's architecture and four phase modulator (FPM) architecture are optimized to provide maximum sideband suppression. The minimum optical signal-to-noise ratio (OSNR) required to simultaneously distribute all the 14 OFDM-UWB sub-bands along the LR-PON distances ranging between 80 and 100 km is also evaluated through numerical simulation. FPM architecture is preferable over Sieben's architecture because the latter SSB architecture generates carriers-carriers beat term at the photodetector output with high power, thereby causing significant degradation in the OFDM-UWB sub-bands with lower central frequencies. The simultaneous distribution of the 14 SSB OFDM-UWB sub-bands in the LR-PON using the FPM architecture shows a minimum OSNR penalty of 3 dB compared with the centralized dis- persion compensation technique.
文摘The Gulf Cooperation Countries have the advantages of fundamental characteristics and abundant natural resources due to the high proportion of solar radiation, which helps to expand the transition to renewable energy, especially in solar projects. The Kuwait location was chosen for this research because of its high dust levels and average daily sunshine of 9.4 hours. The soiling map of Kuwait was then created using PVsyst software. A theoretical and mathematical model for 100 MW was developed based on many environmental and technical parameters. The model was run with Kuwait parameters and 100 MW solar PV power plant capacity. The results show that more than 25% of total generated electricity could be lost annually without any mitigation strategy. Furthermore, the efficiency loss could increase by around 50% during the seasons with sandstorms and high soiling rates. Additionally, manual and automatic cleaning methods were found to increase energy production from 112,092 MWh to 207,300 MWh. Moreover, manual cleaning reduced energy costs by 4.9%, but automated cleaning resulted in a 17.34% higher energy-saving cost than a system without cleaning. In addition, when using the automatic cleaning system, the system’s payback period was reduced from 9.22 to 7.86 years. Therefore, an automated cleaning system is recommended for use in Kuwait.
基金the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014–2018 and 2019– 2020 under grant agreement No. 633053the ELI Beamlines Projects LQ1606 and 19-02545S with financial support from the Czech Science Foundation and the Ministry of Education, Youth and Sports of the Czech Republic+6 种基金support from the European Regional Development Fund, the project ELITAS CZ.02.1.01/0.0/0.0/16 013/0001793the National Programme of ‘Sustainability Ⅱ’ and ELI phase 2 CZ.02.1.01/0.0/0.0/15008/0000162The PETAL project was designed and built by the CEA under the financial auspices of the Region Nouvelle Aquitaine, the French Government and the European Unionsupported by EPSRC grants EP/K022415/1 and EP/R006202supported by the European Cluster of Advanced Laser Light Sources, EUCALL, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654220funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654148 Laserlab-Europethe use of the EPOCH PIC code (developed under EPSRC grant EP/G054940/1).
文摘This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.
基金supported by the National Natural Science Foundation of China(Grant No.12005212)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2021ZD19)。
文摘The accurate and efficient simulation of ocean circulation is a fundamental topic in marine science;however,it is also a well-known and dauntingly difficult problem that requires solving nonlinear partial differential equations with multiple variables.In this paper,we present for the first time an algorithm for simulating ocean circulation on a quantum computer to achieve a computational speedup.Our approach begins with using primitive equations describing the ocean dynamics and then discretizing these equations in time and space.It results in several linear system of equations(LSE)with sparse coefficient matrices.We solve these sparse LSE using the variational quantum linear solver that enables the present algorithm to run easily on near-term quantum computers.Additionally,we develop a scheme for manipulating the data flow in the algorithm based on the quantum random access memory and l∞norm tomography technique.The efficiency of our algorithm is verified using multiple platforms,including MATLAB,a quantum virtual simulator,and a real quantum computer.The impact of the number of shots and the noise of quantum gates on the solution accuracy is also discussed.Our findings demonstrate that error mitigation techniques can efficiently improve the solution accuracy.With the rapid advancements in quantum computing,this work represents an important first step toward solving the challenging problem of simulating ocean circulation using quantum computers.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.60836004)the National Natural Science Foundation of China(Grant No.61376109)
文摘A novel off-state gate RHBD technique to mitigate the single-event transient(SET)in the differential data path of analog circuit is demonstrated in this paper.Simulation results present that this off-state gate technique could exploit charge sharing in differential circuits and reduce differential mode voltage perturbation effectively.It is indicated that this technique is more effective to mitigate SET than the differential charge cancellation(DCC)technique with less penalty.