In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the speci...Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the specific disasterreduction effects of these measures and their economic,social and ecological benefits is yet to be performed.The western region of Sichuan Province frequentlysuffers from geohazards such as debris flow, and thegovernment has adopted many mitigation measures.This study assessed the benefits of debris flowmitigation measures and identified the key influencingfactors via a field-based study conducted in 81 villagesin western Sichuan province, China. A framework forthe evaluation of the benefits of rural debris flowmitigation measures was constructed andquantitatively evaluated using a survey. Snowballsampling was performed to recruit 81 village leadersand 468 farmers. The results showed that managementand engineering measures were the main methodsused to mitigate debris flow;ecological measures wereauxiliary. The average satisfaction scores of farmers forthese three types of measures were 4.07, 3.90, and 3.56,respectively (as measured on a five-point Likert scale).In contrast, in terms of the benefits of these mitigationmeasures, only a small proportion of villages (11.11%)obtained a high level of comprehensive benefits fromthe debris flow mitigation measures, while the majority(88.89%) received medium to low-level benefits. Toimprove this situation, we further studied and foundthat the main factors that restricted villages fromachieving high-level comprehensive benefits were theunpredictable nature of debris flows, labour forceoutflow and remoteness. Effective control measures, agood economic environment and strong governmentassistance were reported as crucial factors forimproving these comprehensive benefits. This studyprovides socio-scientific references for decisionmakingon rural debris flow mitigation measures while keeping villages at the centre of economic development.展开更多
The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce...The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.展开更多
This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protec...This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protection function,including wave energy dissipation,storm surge damping,tsunami mitigation,adjustment to sea level rise and wind speed reduction,which are sys-tematically summarized in this study.Moreover,the study analyzes the extensive physical models,based on indoor flume experi-ments and numerical models,that consider the interaction between mangroves and hydrodynamics,to help our understanding of mangrove-hydrodynamic interactions.Additionally,quantitative approaches for valuing coastal protection services provided by man-groves,including index-based and process-resolving approaches,are introduced in detail.Finally,we point out the limitations of previous studies,indicating that efforts are still required for obtaining more long-term field observations during extreme weather events,to create more real mangrove models for physical experiments,and to develop numerical models that consider the flexible properties of mangroves to better predict wave propagation in mangroves having complex morphology and structures.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patti...The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.展开更多
To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a...To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.展开更多
Revegetation of former agricultural land is a key option for climate change mitigation and nature conservation.Expansion and abandonment of agricultural land is typically influenced by trends in diets and agricultural...Revegetation of former agricultural land is a key option for climate change mitigation and nature conservation.Expansion and abandonment of agricultural land is typically influenced by trends in diets and agricultural inten-sification,which are two key parameters in the Shared Socioeconomic Pathways(SSPs).Datasets mapping future land dynamics under different SSPs and climate change mitigation targets stem from different scenario assump-tions,land data and modelling frameworks.This study aims to determine the role that these three factors play in the estimates of the evolution of cropland and pastureland in future SSPs under different climate scenarios from four main datasets largely used in the climate and land surface studies.The datasets largely agree with the rep-resentation of cropland at present-day conditions,but the identification of pastureland is ambiguous and shows large discrepancies due to the lack of a unique land-use category.Differences occur with future projections,even for the same SSP and climate target.Accounting for CO_(2)sequestration from revegetation of abandoned agri-cultural land and CO_(2)emissions from forest clearance due to agricultural expansion shows a net reduction in vegetation carbon stock for most SSPs considered,except SSP1.However,different datasets give differences in estimates,even when representative of the same scenario.With SSP1,the cumulative increase in carbon stock until 2050 is 3.3 GtC for one dataset,and more than double for another.Our study calls for a common classifica-tion system with improved detection of pastureland to harmonize projections and reduce variability of outcomes in environmental studies.展开更多
Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insight...Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes.展开更多
Cloud computing plays a significant role in modern information technology, providing organizations with numerous benefits, including flexibility, scalability, and cost-efficiency. However, it has become essential for ...Cloud computing plays a significant role in modern information technology, providing organizations with numerous benefits, including flexibility, scalability, and cost-efficiency. However, it has become essential for organizations to ensure the security of their applications, data, and cloud-based networks to use cloud services effectively. This systematic literature review aims to determine the latest information regarding cloud computing security, with a specific emphasis on threats and mitigation strategies. Additionally, it highlights some common threats related to cloud computing security, such as distributed denial-of-service (DDoS) attacks, account hijacking, malware attacks, and data breaches. This research also explores some mitigation strategies, including security awareness training, vulnerability management, security information and event management (SIEM), identity and access management (IAM), and encryption techniques. It discusses emerging trends in cloud security, such as integrating artificial intelligence (AI) and machine learning (ML), serverless computing, and containerization, as well as the effectiveness of the shared responsibility model and its related challenges. The importance of user awareness and the impact of emerging technologies on cloud security have also been discussed in detail to mitigate security risks. A literature review of previous research and scholarly articles has also been conducted to provide insights regarding cloud computing security. It shows the need for continuous research and innovation to address emerging threats and maintain a security-conscious culture in the company.展开更多
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock...Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.展开更多
A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such...A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such synergistic effects;hence, existing studies lack a consistent framework for comparison. Here, we introduce a new synergistic indicator defined as the pollutant generation per gross domestic product (GDP) and adopt an integrated analysis framework by linking the logarithmic mean Divisia index (LMDI) method, response surface model (RSM), and global exposure mortality model (GEMM) to evaluate the synergistic effects of carbon mitigation on both air pollutant reduction and public health in China. The results show that synergistic effects played an increasingly important role in the emissions mitigation of SO_(2), NOx, and primary particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5), and the synergistic mitigation of pollutants respectively increase from 3.1, 1.4, and 0.3 Mt during the 11th Five-Year Plan (FYP) (2006–2010) to 5.6, 3.7, and 1.9 Mt during the 12th FYP (2011–2015). Against the non-control scenario, synergistic effects alone contributed to a 15% reduction in annual mean PM2.5 concentration, resulting in the prevention of 0.29 million (95% confidential interval: 0.28–0.30) PM2.5-attributable excess deaths in 2015. Synergistic benefits to air quality improvement and public health were remarkable in the developed and population-dense eastern provinces and municipalities. With the processes of urbanization and carbon neutrality in the future, synergistic effects are expected to continue to increase. Realizing climate targets in advance in developed regions would concurrently bring strong synergistic effects to air quality and public health.展开更多
To explore the nourishment effect and disaster reduction efficiency of a fully dissipative dry beach under the impact of storms,this paper uses the measured topography and hydrodynamic data to establish a one-dimensio...To explore the nourishment effect and disaster reduction efficiency of a fully dissipative dry beach under the impact of storms,this paper uses the measured topography and hydrodynamic data to establish a one-dimensional numerical model of the XBeach beach profile.By numerically modeling the change in the nourished profile for different dry beach widths under normal waves and storm conditions and the recovery process of the profile after the storm,the degree of response in dry beach nourishment for the fully dissipative beach is analyzed.The results show that under normal wave conditions,the response of the nourished dry beach is obvious.Sediment on the dry beach erodes heavily,and the shoreline moves landward over a long distance.With the increase in the width and size of the dry beach,the wave height at the bottom of the backshore profile decreases,the wave height attenuation rate increases continuously,and the wave elimination effect is remarkable.When the storm incident wave intensifies,the wave height attenuation rate of the nourished dry beach decreases,indicating that the smaller the storm intensity is,the more significant the wave reduction effect of the nourished dry beach is.At the same time,different profile arrangements of nourished dry beaches suffer from different degrees of erosion under storm conditions,with significant changes in profile morphology.With intensified storm action,the intensity of sediment erosion in the nourished dry beach increases,the nourishment is weakened,and the recovery effect of the profile after the storm is not obvious.The results of the numerical modeling highlight that the dry beach nourishment method can resist storms to a certain extent,but the overall effect is relatively limited.展开更多
Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessiv...Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.展开更多
Disruption remains to be a serious threat to large tokamaks like the International Thermonuclear Experimental Reactor(ITER).The injection speed of disruption mitigation systems(DMS)driven by high pressure gas is limit...Disruption remains to be a serious threat to large tokamaks like the International Thermonuclear Experimental Reactor(ITER).The injection speed of disruption mitigation systems(DMS)driven by high pressure gas is limited by the sound speed of the propellant gas.When extrapolating to ITER-like tokamaks,long overall reaction duration and shallow penetration depth due to low injection speed make it stricter for plasma control system to predict the impending disruptions.Some disruptions with a short warning time may be unavoidable.Thus,a fast time response and high injection speed DMS is essential for large scale devices.The electromagnetic pellet-injection(EMPI)system is a novel massive material injection system aiming to provide rapid and effective disruption mitigation.Based on the railgun concept,EMPI can accelerate the payload to over 1000 m/s and shorten the overall reaction time to a few milliseconds.To verify the injection ability and stability of the EMPI,the prototype injector EMPI-1 has been designed and assembled.The preliminary test has been carried out using a 5.9 g armature to propel a dummy pellet and the results suggest that the EMPI configuration has a great potential to be the DMS of the large scale fusion devices.展开更多
Massive gas injection(MGI)is a traditional plasma disruption mitigation method.This method directly injected massive gas into the pre-disruption plasma and had been developed on the Experimental Advanced Superconducti...Massive gas injection(MGI)is a traditional plasma disruption mitigation method.This method directly injected massive gas into the pre-disruption plasma and had been developed on the Experimental Advanced Superconducting Tokamak(EAST).Different noble gas injection experiments,including He,Ne,and Ar,were performed to compare the mitigation effect of plasma disruption by evaluating the key parameters such as flight time,pre-thermal quench(pre-TQ),and current quench(CQ).The flight time was shorter for low atomic number(Z)gas,and the decrease in flight time by increasing the amount of gas was insignificant.However,both pre-TQ and CQ durations decreased considerably with the increase in gas injection amount.The effect of atomic mass on pre-TQ and CQ durations showed the opposite trend.The observed trend could help in controlling CQ duration in a reasonable area.Moreover,the analysis of radiation distribution with different impurity injections indicated that low Z impurity could reduce the asymmetry of radiation,which is valuable in mitigating plasma disruption.These results provided essential data support for plasma disruption mitigation on EAST and future fusion devices.展开更多
On July 10,2004,Beijing was hit by the rainstorm that has not been seen for many years,which caused water accumulation in many places of the urban area,power supply interruption in many places,and traffic paralysis fo...On July 10,2004,Beijing was hit by the rainstorm that has not been seen for many years,which caused water accumulation in many places of the urban area,power supply interruption in many places,and traffic paralysis for nearly 5 h. On July 12,2004,the rainstorm in Shanghai lasted less than 1 h,but it caused 7 deaths,more than 20 injuries,extensive power outages and traffic paralysis. At the end of 2005,the continuous snowfall in Weihai City of Shandong Province for half a month caused direct economic losses of over 200 million yuan,and the continuous heavy snowfall had a serious impact on people’s lives. From July 17 to 23,2021,Henan Province suffered a rare extremely heavy rainstorm in history,with a direct economic loss of 120.6 billion yuan. Faced with such urban meteorological disasters and other types of urban disasters,combined with the current situation of disaster prevention and reduction in China,what will managers,decision-makers,and experts and scholars think about from them.展开更多
This article outlines a framework for mainstreaming climate change into African blue economy Strategies. We underscore that the proliferation of the blue economy in climate change has gained momentum, however, there r...This article outlines a framework for mainstreaming climate change into African blue economy Strategies. We underscore that the proliferation of the blue economy in climate change has gained momentum, however, there remains no standardized approach, mechanism or framework for mainstreaming and integrating climate change into blue economy. The economic pillars of economic development, social equity, and environmental management, conservation and sustainability are at the center of the blue economy frontier. The surrounding blue economy components have led to discrepancies in how the blue economy is mainstreamed, integrated, implemented and what is prioritized on agile basis. This article takes a continental overview of current approaches to regional and national levels of blue economy realignment. In doing so this article provides the continental, regional and national assessments of blue economy implementation approaches, through the development of a stepwise innovative process. Using the available literature, data and information from blue economy strategies and other publicly available online information, we analyzed each region and national blue economy strategies to assess the levels of blue economy components mainstreamed into climate change. Throughout this article we outline the methodological approach we took in order to develop a stepwise process innovation for mainstreaming climate change into blue economy at national and regional levels This approach will allow for ongoing and continued mainstreaming and integrating of climate change into blue economy realignment, operationalization and implementation as the concept of blue economy continues to evolve. The approach entails a collective action process for an informed decision making to direct, guide and inform actions for climate change that will effectively and efficiently enhance adaptation, mitigation and resiliency anchored to sustainable development. It establishes linkages to blue economy strategies through an integrated approach. The article addresses the question “How does mainstreaming climate change into African blue economy strategies contribute to achieving sustainable development?” The methodology is based on desk-top study and literature review. This explores the process of mainstreaming, drawing on the countries and regional blue economy strategies, that have made progress in development of blue economy strategies, plans, guidelines and frameworks for governance coordination mechanism. In conclusion, the article states that mainstreaming climate change in Africa reflects a complex pathway of processes and stakeholders that need to be taken into consideration in further research, with particular focus on institutional policy change, administrative structures and transformation.展开更多
Bridges serve as essential parts of transportation infrastructure,facilitating the movement of people and goods across rivers,valleys,and other obstacles.However,they are also susceptible to a wide range of natural ha...Bridges serve as essential parts of transportation infrastructure,facilitating the movement of people and goods across rivers,valleys,and other obstacles.However,they are also susceptible to a wide range of natural hazards,including floods,earthquakes,and landslides,which can damage or even collapse these structures,leading to severe economic and human losses.A risk index has been developed to address this issue,which quantifies the likelihood and severity of natural hazards occurring in a specific location.The application of risk indices for natural hazards in bridge management involves a data collection process and mathematical modelling.The data collection process gathers information on bridges’location,condition,and vulnerability,while mathematical modelling uses the data to assess the risk of natural hazards.Overall,risk indices provide a quantitative measure of the vulnerability of bridges to natural hazards and help to prioritize maintenance and repair activities.Mitigation measures are then evaluated and implemented based on the risk assessment results.By using this tool,the UBMS research group has developed an algorithm for risk assessment which will be essential in the decision-making process,specifically focused on enhancing Fund Optimization,Deterioration Modelling,and Risk Analysis.These developments effectively fulfill the primary objectives associated with addressing and mitigating hazards.This development also helps bridge managers understand the potential threats posed by natural hazards and allocate resources more efficiently to ensure the safety and longevity of critical transportation infrastructure.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
基金supported by the Science and Technology Research Program of the Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(Grant No.IMHE-ZDRW-08)the Sichuan Science and Technology Program(Grant No.2022JDR0209).
文摘Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the specific disasterreduction effects of these measures and their economic,social and ecological benefits is yet to be performed.The western region of Sichuan Province frequentlysuffers from geohazards such as debris flow, and thegovernment has adopted many mitigation measures.This study assessed the benefits of debris flowmitigation measures and identified the key influencingfactors via a field-based study conducted in 81 villagesin western Sichuan province, China. A framework forthe evaluation of the benefits of rural debris flowmitigation measures was constructed andquantitatively evaluated using a survey. Snowballsampling was performed to recruit 81 village leadersand 468 farmers. The results showed that managementand engineering measures were the main methodsused to mitigate debris flow;ecological measures wereauxiliary. The average satisfaction scores of farmers forthese three types of measures were 4.07, 3.90, and 3.56,respectively (as measured on a five-point Likert scale).In contrast, in terms of the benefits of these mitigationmeasures, only a small proportion of villages (11.11%)obtained a high level of comprehensive benefits fromthe debris flow mitigation measures, while the majority(88.89%) received medium to low-level benefits. Toimprove this situation, we further studied and foundthat the main factors that restricted villages fromachieving high-level comprehensive benefits were theunpredictable nature of debris flows, labour forceoutflow and remoteness. Effective control measures, agood economic environment and strong governmentassistance were reported as crucial factors forimproving these comprehensive benefits. This studyprovides socio-scientific references for decisionmakingon rural debris flow mitigation measures while keeping villages at the centre of economic development.
基金This work was supported financially by the National Natural Science Foundation of China(No.12375176).
文摘The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.
基金funded by the National Key R&D Program of China(No.2023YFC3007900)the Young Scientists Fund of the National Natural Science Foundation of China(No.42106204)+2 种基金the Jiangsu Basic Research Program(Natural Science Foundation)(No.BK20220082)the National Natural Science Foundation of China(No.52271271)the Major Science&Technology Projects of the Ministry of Water Resources(No.SKS-2022025).
文摘This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protection function,including wave energy dissipation,storm surge damping,tsunami mitigation,adjustment to sea level rise and wind speed reduction,which are sys-tematically summarized in this study.Moreover,the study analyzes the extensive physical models,based on indoor flume experi-ments and numerical models,that consider the interaction between mangroves and hydrodynamics,to help our understanding of mangrove-hydrodynamic interactions.Additionally,quantitative approaches for valuing coastal protection services provided by man-groves,including index-based and process-resolving approaches,are introduced in detail.Finally,we point out the limitations of previous studies,indicating that efforts are still required for obtaining more long-term field observations during extreme weather events,to create more real mangrove models for physical experiments,and to develop numerical models that consider the flexible properties of mangroves to better predict wave propagation in mangroves having complex morphology and structures.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
基金supported by the Key Scientific and Technological Research Projects of Xinjiang Production and Construction Corps (2022AB001)the Henan Key Laboratory of Cold Chain Food Quality and Safety Control (CCFQ2022)+2 种基金the National Key R&D Program of China (2019YFC1606200),funded by Ministry of Science and Technology of the People’s Republic of Chinathe China Agriculture Research System (CARS-41), which was funded by the Chinese Ministry of Agriculturethe Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)
文摘The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.
基金supported in part by the National Natural Science Foundation of China (No.62271253,61901523,62001381)Fundamental Research Funds for the Central Universities (No.NS2023018)+2 种基金the National Aerospace Science Foundation of China under Grant 2023Z021052002the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D09)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20220402)。
文摘To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.
基金funded by the Norwegian Research Council through the project MitiStress(Grant No.286773).
文摘Revegetation of former agricultural land is a key option for climate change mitigation and nature conservation.Expansion and abandonment of agricultural land is typically influenced by trends in diets and agricultural inten-sification,which are two key parameters in the Shared Socioeconomic Pathways(SSPs).Datasets mapping future land dynamics under different SSPs and climate change mitigation targets stem from different scenario assump-tions,land data and modelling frameworks.This study aims to determine the role that these three factors play in the estimates of the evolution of cropland and pastureland in future SSPs under different climate scenarios from four main datasets largely used in the climate and land surface studies.The datasets largely agree with the rep-resentation of cropland at present-day conditions,but the identification of pastureland is ambiguous and shows large discrepancies due to the lack of a unique land-use category.Differences occur with future projections,even for the same SSP and climate target.Accounting for CO_(2)sequestration from revegetation of abandoned agri-cultural land and CO_(2)emissions from forest clearance due to agricultural expansion shows a net reduction in vegetation carbon stock for most SSPs considered,except SSP1.However,different datasets give differences in estimates,even when representative of the same scenario.With SSP1,the cumulative increase in carbon stock until 2050 is 3.3 GtC for one dataset,and more than double for another.Our study calls for a common classifica-tion system with improved detection of pastureland to harmonize projections and reduce variability of outcomes in environmental studies.
文摘Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes.
文摘Cloud computing plays a significant role in modern information technology, providing organizations with numerous benefits, including flexibility, scalability, and cost-efficiency. However, it has become essential for organizations to ensure the security of their applications, data, and cloud-based networks to use cloud services effectively. This systematic literature review aims to determine the latest information regarding cloud computing security, with a specific emphasis on threats and mitigation strategies. Additionally, it highlights some common threats related to cloud computing security, such as distributed denial-of-service (DDoS) attacks, account hijacking, malware attacks, and data breaches. This research also explores some mitigation strategies, including security awareness training, vulnerability management, security information and event management (SIEM), identity and access management (IAM), and encryption techniques. It discusses emerging trends in cloud security, such as integrating artificial intelligence (AI) and machine learning (ML), serverless computing, and containerization, as well as the effectiveness of the shared responsibility model and its related challenges. The importance of user awareness and the impact of emerging technologies on cloud security have also been discussed in detail to mitigate security risks. A literature review of previous research and scholarly articles has also been conducted to provide insights regarding cloud computing security. It shows the need for continuous research and innovation to address emerging threats and maintain a security-conscious culture in the company.
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
基金This work was financially supported by National Natural Science Foundation of China(Grant Nos.U2244226,U2244227 and 42177172).
文摘Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.
基金supported by the National Natural Science Foundation of China(72025401,71974108,and 72140003)the Tsinghua University-INDITEX Sustainable Development Fund.
文摘A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such synergistic effects;hence, existing studies lack a consistent framework for comparison. Here, we introduce a new synergistic indicator defined as the pollutant generation per gross domestic product (GDP) and adopt an integrated analysis framework by linking the logarithmic mean Divisia index (LMDI) method, response surface model (RSM), and global exposure mortality model (GEMM) to evaluate the synergistic effects of carbon mitigation on both air pollutant reduction and public health in China. The results show that synergistic effects played an increasingly important role in the emissions mitigation of SO_(2), NOx, and primary particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5), and the synergistic mitigation of pollutants respectively increase from 3.1, 1.4, and 0.3 Mt during the 11th Five-Year Plan (FYP) (2006–2010) to 5.6, 3.7, and 1.9 Mt during the 12th FYP (2011–2015). Against the non-control scenario, synergistic effects alone contributed to a 15% reduction in annual mean PM2.5 concentration, resulting in the prevention of 0.29 million (95% confidential interval: 0.28–0.30) PM2.5-attributable excess deaths in 2015. Synergistic benefits to air quality improvement and public health were remarkable in the developed and population-dense eastern provinces and municipalities. With the processes of urbanization and carbon neutrality in the future, synergistic effects are expected to continue to increase. Realizing climate targets in advance in developed regions would concurrently bring strong synergistic effects to air quality and public health.
基金The National Natural Science Foundation of China under contract No.41930538the Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract No.2022017。
文摘To explore the nourishment effect and disaster reduction efficiency of a fully dissipative dry beach under the impact of storms,this paper uses the measured topography and hydrodynamic data to establish a one-dimensional numerical model of the XBeach beach profile.By numerically modeling the change in the nourished profile for different dry beach widths under normal waves and storm conditions and the recovery process of the profile after the storm,the degree of response in dry beach nourishment for the fully dissipative beach is analyzed.The results show that under normal wave conditions,the response of the nourished dry beach is obvious.Sediment on the dry beach erodes heavily,and the shoreline moves landward over a long distance.With the increase in the width and size of the dry beach,the wave height at the bottom of the backshore profile decreases,the wave height attenuation rate increases continuously,and the wave elimination effect is remarkable.When the storm incident wave intensifies,the wave height attenuation rate of the nourished dry beach decreases,indicating that the smaller the storm intensity is,the more significant the wave reduction effect of the nourished dry beach is.At the same time,different profile arrangements of nourished dry beaches suffer from different degrees of erosion under storm conditions,with significant changes in profile morphology.With intensified storm action,the intensity of sediment erosion in the nourished dry beach increases,the nourishment is weakened,and the recovery effect of the profile after the storm is not obvious.The results of the numerical modeling highlight that the dry beach nourishment method can resist storms to a certain extent,but the overall effect is relatively limited.
基金Programmatic funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Project PTDC/ECI-CON/29634/2017-POCI-01-0145-FEDER-029634-funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização(POCI)by national funds(PIDDAC)through FCT/MCTES。
文摘Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.
基金Project supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2019YFE03010004)the National Natural Science Foundation of China (Grant Nos. 12175078, 11905077, and 51821005)
文摘Disruption remains to be a serious threat to large tokamaks like the International Thermonuclear Experimental Reactor(ITER).The injection speed of disruption mitigation systems(DMS)driven by high pressure gas is limited by the sound speed of the propellant gas.When extrapolating to ITER-like tokamaks,long overall reaction duration and shallow penetration depth due to low injection speed make it stricter for plasma control system to predict the impending disruptions.Some disruptions with a short warning time may be unavoidable.Thus,a fast time response and high injection speed DMS is essential for large scale devices.The electromagnetic pellet-injection(EMPI)system is a novel massive material injection system aiming to provide rapid and effective disruption mitigation.Based on the railgun concept,EMPI can accelerate the payload to over 1000 m/s and shorten the overall reaction time to a few milliseconds.To verify the injection ability and stability of the EMPI,the prototype injector EMPI-1 has been designed and assembled.The preliminary test has been carried out using a 5.9 g armature to propel a dummy pellet and the results suggest that the EMPI configuration has a great potential to be the DMS of the large scale fusion devices.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0301100 and 2022YFE03130000)the National Natural Science Foundation of China(Grant Nos.12105322,11905138,11905148,and 11905254)+5 种基金the Natural Science Foundation of Anhui Province of China(Grant No.2108085QA38)the Chinese Postdoctoral Science Found(Grant No.2021000278)the Presidential Foundation of Hefei Institutes of Physical Science(Grant No.YZJJ2021QN12)the U.S.Department of Energy contract DE-AC02–09CH11466(Grant No.DE-SC0016553)the Users with Excellence Program of Hefei Science Center CAS(Grant Nos.2020HSC-UE010 and 2021HSC-UE013)Interdisciplinary and Collaborative Teams of CAS.
文摘Massive gas injection(MGI)is a traditional plasma disruption mitigation method.This method directly injected massive gas into the pre-disruption plasma and had been developed on the Experimental Advanced Superconducting Tokamak(EAST).Different noble gas injection experiments,including He,Ne,and Ar,were performed to compare the mitigation effect of plasma disruption by evaluating the key parameters such as flight time,pre-thermal quench(pre-TQ),and current quench(CQ).The flight time was shorter for low atomic number(Z)gas,and the decrease in flight time by increasing the amount of gas was insignificant.However,both pre-TQ and CQ durations decreased considerably with the increase in gas injection amount.The effect of atomic mass on pre-TQ and CQ durations showed the opposite trend.The observed trend could help in controlling CQ duration in a reasonable area.Moreover,the analysis of radiation distribution with different impurity injections indicated that low Z impurity could reduce the asymmetry of radiation,which is valuable in mitigating plasma disruption.These results provided essential data support for plasma disruption mitigation on EAST and future fusion devices.
文摘On July 10,2004,Beijing was hit by the rainstorm that has not been seen for many years,which caused water accumulation in many places of the urban area,power supply interruption in many places,and traffic paralysis for nearly 5 h. On July 12,2004,the rainstorm in Shanghai lasted less than 1 h,but it caused 7 deaths,more than 20 injuries,extensive power outages and traffic paralysis. At the end of 2005,the continuous snowfall in Weihai City of Shandong Province for half a month caused direct economic losses of over 200 million yuan,and the continuous heavy snowfall had a serious impact on people’s lives. From July 17 to 23,2021,Henan Province suffered a rare extremely heavy rainstorm in history,with a direct economic loss of 120.6 billion yuan. Faced with such urban meteorological disasters and other types of urban disasters,combined with the current situation of disaster prevention and reduction in China,what will managers,decision-makers,and experts and scholars think about from them.
文摘This article outlines a framework for mainstreaming climate change into African blue economy Strategies. We underscore that the proliferation of the blue economy in climate change has gained momentum, however, there remains no standardized approach, mechanism or framework for mainstreaming and integrating climate change into blue economy. The economic pillars of economic development, social equity, and environmental management, conservation and sustainability are at the center of the blue economy frontier. The surrounding blue economy components have led to discrepancies in how the blue economy is mainstreamed, integrated, implemented and what is prioritized on agile basis. This article takes a continental overview of current approaches to regional and national levels of blue economy realignment. In doing so this article provides the continental, regional and national assessments of blue economy implementation approaches, through the development of a stepwise innovative process. Using the available literature, data and information from blue economy strategies and other publicly available online information, we analyzed each region and national blue economy strategies to assess the levels of blue economy components mainstreamed into climate change. Throughout this article we outline the methodological approach we took in order to develop a stepwise process innovation for mainstreaming climate change into blue economy at national and regional levels This approach will allow for ongoing and continued mainstreaming and integrating of climate change into blue economy realignment, operationalization and implementation as the concept of blue economy continues to evolve. The approach entails a collective action process for an informed decision making to direct, guide and inform actions for climate change that will effectively and efficiently enhance adaptation, mitigation and resiliency anchored to sustainable development. It establishes linkages to blue economy strategies through an integrated approach. The article addresses the question “How does mainstreaming climate change into African blue economy strategies contribute to achieving sustainable development?” The methodology is based on desk-top study and literature review. This explores the process of mainstreaming, drawing on the countries and regional blue economy strategies, that have made progress in development of blue economy strategies, plans, guidelines and frameworks for governance coordination mechanism. In conclusion, the article states that mainstreaming climate change in Africa reflects a complex pathway of processes and stakeholders that need to be taken into consideration in further research, with particular focus on institutional policy change, administrative structures and transformation.
文摘Bridges serve as essential parts of transportation infrastructure,facilitating the movement of people and goods across rivers,valleys,and other obstacles.However,they are also susceptible to a wide range of natural hazards,including floods,earthquakes,and landslides,which can damage or even collapse these structures,leading to severe economic and human losses.A risk index has been developed to address this issue,which quantifies the likelihood and severity of natural hazards occurring in a specific location.The application of risk indices for natural hazards in bridge management involves a data collection process and mathematical modelling.The data collection process gathers information on bridges’location,condition,and vulnerability,while mathematical modelling uses the data to assess the risk of natural hazards.Overall,risk indices provide a quantitative measure of the vulnerability of bridges to natural hazards and help to prioritize maintenance and repair activities.Mitigation measures are then evaluated and implemented based on the risk assessment results.By using this tool,the UBMS research group has developed an algorithm for risk assessment which will be essential in the decision-making process,specifically focused on enhancing Fund Optimization,Deterioration Modelling,and Risk Analysis.These developments effectively fulfill the primary objectives associated with addressing and mitigating hazards.This development also helps bridge managers understand the potential threats posed by natural hazards and allocate resources more efficiently to ensure the safety and longevity of critical transportation infrastructure.