BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for ch...BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such antitumor activity can be increased using cell lysates derived from an honokioltreated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.展开更多
The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. ...The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of nonimmune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct proinflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD.The effects determine pathologic changes,which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes.In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers,research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.展开更多
Nonalcoholic fatty liver disease(NAFLD) is the most common liver disease worldwide, affecting approximately one third of the Western world. It consists of a wide spectrum of liver disorders, ranging from fatty liver t...Nonalcoholic fatty liver disease(NAFLD) is the most common liver disease worldwide, affecting approximately one third of the Western world. It consists of a wide spectrum of liver disorders, ranging from fatty liver to nonalcoholic steatohepatitis(NASH), which consists of steatosis, ballooning injury and inflammation. Despite an alarming growth in the statistics surrounding NAFLD, there are as yet no effective therapies for its treatment. Innate immune signaling has been thought to play a significant role in initiating and augmenting hepatic inflammation, contributing to the transition from nonalcoholic fatty liver to NASH. An immune response is triggered by countless signals called damage-associated molecular patterns(DAMPs) elicited by lipid-laden and damaged hepatocytes, which are recognized by pattern recognition receptors(PRRs) on hepatic immune cells to initiate inflammatory signaling. In this editorial, in addition to summarizing innate immune signaling in NAFLD and discussing potential therapies that target innate immune pathways, we have described a recent study that demonstrated that mitochondrial DNA serves as a DAMP activating a hepatic PRR, TLR9, in mice and in the plasma of NASH patients. In addition to identifying a new ligand for TLR9 during NASH progression, the study shows that blocking TLR9 reverses NASH, paving the way for the development of future NASH therapy.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
Helicobacter pylori(H.pylori)infects the human stomach during infancy and develops into chronic activeinflammation.The majority of H.pylori tend to colonize within the mucous gel layer of the stomach.Thestomach lacks ...Helicobacter pylori(H.pylori)infects the human stomach during infancy and develops into chronic activeinflammation.The majority of H.pylori tend to colonize within the mucous gel layer of the stomach.Thestomach lacks its own immune function,thus innateimmunity as the first line of defense is vital for specificimmunity against H.pylori.We review recent discoveries in the pathophysiologic roles of toll-like receptors(TLRs),mainly TLR2 and TLR4,in H.pylori-induced inflammation.In addition,the TLR pathways activated byH.pylori-induced inflammation have been shown to beclosely associated not only with gastric carcinogenesis,but also with formation of the tumor microenvironmentthrough the production of pro-inflammatory cytokines,chemokines,and reactive oxygen species.Althoughthe correlation between single nucleotide polymorphisms of TLRs and gastric cancer risk remains unclear,a recent study demonstrated that STAT3-driven upregulation of TLR2 might promote gastric tumorigenesis independent of inflammation.Further research onthe regulation of TLRs in H.pylori-associated gastriccarcinogenesis will uncover diagnostic/predictive biomarkers and therapeutic targets for gastric cancer.展开更多
Photodynamic therapy(PDT) is a clinically approved procedure for treatment of cancer and infections. PDT involves systemic or topical administration of a photosensitizer(PS), followed by irradiation of the diseased ar...Photodynamic therapy(PDT) is a clinically approved procedure for treatment of cancer and infections. PDT involves systemic or topical administration of a photosensitizer(PS), followed by irradiation of the diseased area with light of a wavelength corresponding to an absorbance band of the PS. In the presence of oxygen, a photochemical reaction is initiated, leading to the generation of reactive oxygen species and cell death. Besides causing direct cytotoxic effects on illuminated tumor cells, PDT is known to cause damage to the tumor vasculature and induce the release of pro-inflammatory molecules. Pre-clinical and clinical studies have demonstrated that PDT is capable of affecting both the innate and adaptive arms of the immune system. Immune stimulatory properties of PDT may increase its beneficial effects giving the therapy wider potential to become more extensively used in clinical practice. Be-sides stimulating tumor-specific cytotoxic T-cells capable to destroy distant untreated tumor cells, PDT leads to development of anti-tumor memory immunity that can potentially prevent the recurrence of cancer. The immunological effects of PDT make the therapy more effective also when used for treatment of bacterial infections, due to an augmented infiltration of neutrophils into the infected regions that seems to potentiate the outcome of the treatment.展开更多
Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors.However,most patients cannot benefit from such therapies,mainly due to the intrins...Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors.However,most patients cannot benefit from such therapies,mainly due to the intrinsic low immunogenicity of cancer cells(CCs)that allows them to escape recognition by immune cells of the body.Immunogenic cell death(ICD),which is a form of regulated cell death,engages in a complex dialogue between dying CCs and immune cells in the tumor microenvironment(TME),ultimately evoking the damage-associated molecular pattern(DAMP)signals to activate tumor-specific immunity.The ICD inducers mediate the death of CCs and improve both antigenicity and adjuvanticity.At the same time,they reprogram TME with a“cold-warmhot”immune status,ultimately amplifying and sustaining dendritic cell-and T cell-dependent innate sensing as well as the antitumor immune responses.In this review,we discuss how to stimulate ICD based upon the biological properties of CCs that have evolved under diverse stress conditions.Additionally,we highlight how this dynamic interaction contributes to priming tumor immunogenicity,thereby boosting anticancer immune responses.We believe that a deep understanding of these ICD processes will provide a framework for evaluating its vital role in cancer immunotherapy.展开更多
Background:Acute kidney injury(AKI)is the main life-threatening complication of crush syndrome(CS),and myoglobin is accepted as the main pathogenic factor.The pattern recognition receptor retinoicacid-inducible gene I...Background:Acute kidney injury(AKI)is the main life-threatening complication of crush syndrome(CS),and myoglobin is accepted as the main pathogenic factor.The pattern recognition receptor retinoicacid-inducible gene I(RIG-I)has been reported to exert anti-viral effects function in the innate immune response.However,it is not clear whether RIG-I plays a role in CS-AKI.The present research was carried out to explore the role of RIG-I in CS-AKI.Methods:Sprague-Dawley rats were randomly divided into two groups:the sham and CS groups(n=12).After administration of anesthesia,the double hind limbs of rats in the CS group were put under a pressure of 3 kg for 16 h to mimic crush conditions.The rats in both groups were denied access to food and water.Rats were sacrificed at 12 h or 36 h after pressure was relieved.The successful establishment of the CS-AKI model was confirmed by serum biochemical analysis and renal histological examination.In addition,RNA sequencing was performed on rat kidney tissue to identify molecular pathways involved in CS-AKI.Furthermore,NRK-52 E cells were treated with 200μmol/L ferrous myoglobin to mimic CS-AKI at the cellular level.The cells and cell supernatant samples were collected at 6 h or 24 h.Small interfering RNAs(siRNA)was used to knock down RIG-I expression.The relative expression levels of molecules involved in the RIG-I pathway in rat kidney or cells samples were measured by quantitative real-time PCR(qPCR),Western blotting analysis,and immunohistochemistry(IHC)staining.Tumor necrosis factor-α(TNF-α)was d etected by ELISA.Co-immunoprecipitation(Co-IP)assays were used to detect the interaction between RIG-I and myoglobin.Results:RNA sequencing of CS-AKI rat kidney tissue revealed that the different expression of RIG-I signaling pathway.qPCR,Western blotting,and IHC assays showed that RIG-I,nuclear factor kappa-B(NF-κB)P65,p-P65,and the a poptotic marker caspase-3 and cleaved caspase-3 were up-regulated in the CS group(P<0.05).However,the levels of interferon regulatory factor 3(IRF3),p-IRF3 and the antiviral factor interferon-beta(IFN-β)showed no significant c hanges between the sham and CS groups.Co-IP assays showed the interaction between RIG-I and myoglobin in the kidneys of the CS group.Depletion of RIG-I could alleviate the myoglobin induced expression of apoptosis-associated molecules via the NF-κB/caspase-3 axis.C onclusions:RIG-I is a novel damage-associated molecular patterns(DAMPs)sensor for myoglobin and participates in the NF-κB/caspase-3 signaling pathway in CS-AKI.In the development of CS-AKI,specific intervention in the RIG-I p athway might be a potential therapeutic strategy for CS-AKI.展开更多
The main task of cancer vaccines is to deliver tumorspecifc antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic the...The main task of cancer vaccines is to deliver tumorspecifc antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic therapy (PDT)-generated vaccines as an example of autologous whole-cell cancer vaccines, the importance is discussed of the expression of death-associated molecules on cancer vaccine cells. This aspect appears critical for the optimal capture of vaccine cells by host’s sentinel phagocytes in order that the tumor antigenic material is processed and presented for immune recognition and elimination of targeted malignancy. It is shown that changing death pattern of vaccine cells by agents modulating apoptosis, autophagy or necrosis can significantly alter the therapeutic impact of PDT-generated vaccines. Improved therapeutic effect was observed with inhibitors of necrosis/necroptosis using IM-54, necrostatin-1 or necrostatin-7, as well as with lethal autophagy inducer STF62247. In contrast, reduced vaccine potency was found in case of treating vaccine cells with apoptosis inhibitors or lethal autophagy inhibitor spautin-1. Therefore, PDT-generated cancer vaccine cells undergoing apoptosis or lethal autophagy are much more likely to produce therapeutic benefit than vaccine cells that are necrotic. These fndings warrant further detailed examination of the strategy using cell death modulating agents for the enhancement of the efficacy of cancer vaccines.展开更多
Beyond their function as structural barriers,plant cell walls are essential elements for the adaptation of plants to environmental conditions.Cell walls are dynamic structures whose composition and integrity can be al...Beyond their function as structural barriers,plant cell walls are essential elements for the adaptation of plants to environmental conditions.Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues.These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception.Plant cell wall damage caused by pathogen infection,wounding,or other stresses leads to the release of wall molecules,such as carbohydrates(glycans),that function as damage-associated molecular patterns(DAMPs).DAMPs are perceived by the extracellular ectodomains(ECDs)of pattern recognition receptors(PRRs)to activate pattern-triggered immunity(PTI)and disease resistance.Similarly,glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns(MAMPs)by specific ECD-PRRs triggering PTI responses.The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years.However,the structural mechanisms underlying glycan recognition by plant PRRs remain limited.Currently,this knowledge is mainly focused on receptors of the LysM-PRR family,which are involved in the perception of various molecules,such as chitooligosaccharides from fungi and lipo-chitooligosaccharides(i.e.,Nod/MYC factors from bacteria and mycorrhiza,respectively)that trigger differential physiological responses.Nevertheless,additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition.These include receptor kinases(RKs)with leucine-rich repeat and Malectin domains in their ECDs(LRR-MAL RKs),Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group(CrRLK1L)with Malectin-like domains in their ECDs,as well as wall-associated kinases,lectin-RKs,and LRR-extensins.The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception.The gained knowledge holds the potential to facilitate the development of sustainable,glycan-based crop protection solutions.展开更多
In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliag...In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliagnin B(a),camelliagnin A(b),16-O-angeloybarringtogenol C(c),theasapogenol E(d),theasapogenol F(e).Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites(a1−a6).The anti-inflammatory potential of these compounds was assessed using pathogenassociated molecular patterns(PAMPs)and damage-associated molecular patterns molecules(DAMPs)-mediated cellular inflammation models.Notably,compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide(LPS)and high-mobility group box 1(HMGB1)-induced inflammation,surpassing the efficacy of the standard anti-inflammatory agent,carbenoxolone.Conversely,compounds d,a3,and a6 selectivity targeted endogenous HMGB1-induced inflammation,showcasing a pronounced specificity.These results underscore the therapeutic promise of C.oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.展开更多
基金the grant from the Thailand Research Fund,No.BRG6180010Naresuan University Research Grant,No.R2561B001
文摘BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such antitumor activity can be increased using cell lysates derived from an honokioltreated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.
基金Supported by the Brazilian research foundations Fundacao de Amparo à Pesquisa do Estado do Rio de Janeiro--FAPERJ,No.E26/202.781/2017Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq,No.302401/2016-4
文摘The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of nonimmune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct proinflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD.The effects determine pathologic changes,which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes.In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers,research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.
文摘Nonalcoholic fatty liver disease(NAFLD) is the most common liver disease worldwide, affecting approximately one third of the Western world. It consists of a wide spectrum of liver disorders, ranging from fatty liver to nonalcoholic steatohepatitis(NASH), which consists of steatosis, ballooning injury and inflammation. Despite an alarming growth in the statistics surrounding NAFLD, there are as yet no effective therapies for its treatment. Innate immune signaling has been thought to play a significant role in initiating and augmenting hepatic inflammation, contributing to the transition from nonalcoholic fatty liver to NASH. An immune response is triggered by countless signals called damage-associated molecular patterns(DAMPs) elicited by lipid-laden and damaged hepatocytes, which are recognized by pattern recognition receptors(PRRs) on hepatic immune cells to initiate inflammatory signaling. In this editorial, in addition to summarizing innate immune signaling in NAFLD and discussing potential therapies that target innate immune pathways, we have described a recent study that demonstrated that mitochondrial DNA serves as a DAMP activating a hepatic PRR, TLR9, in mice and in the plasma of NASH patients. In addition to identifying a new ligand for TLR9 during NASH progression, the study shows that blocking TLR9 reverses NASH, paving the way for the development of future NASH therapy.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
文摘Helicobacter pylori(H.pylori)infects the human stomach during infancy and develops into chronic activeinflammation.The majority of H.pylori tend to colonize within the mucous gel layer of the stomach.Thestomach lacks its own immune function,thus innateimmunity as the first line of defense is vital for specificimmunity against H.pylori.We review recent discoveries in the pathophysiologic roles of toll-like receptors(TLRs),mainly TLR2 and TLR4,in H.pylori-induced inflammation.In addition,the TLR pathways activated byH.pylori-induced inflammation have been shown to beclosely associated not only with gastric carcinogenesis,but also with formation of the tumor microenvironmentthrough the production of pro-inflammatory cytokines,chemokines,and reactive oxygen species.Althoughthe correlation between single nucleotide polymorphisms of TLRs and gastric cancer risk remains unclear,a recent study demonstrated that STAT3-driven upregulation of TLR2 might promote gastric tumorigenesis independent of inflammation.Further research onthe regulation of TLRs in H.pylori-associated gastriccarcinogenesis will uncover diagnostic/predictive biomarkers and therapeutic targets for gastric cancer.
基金Supported by United States National Institute of Health grant AI050875the Ph D program of the Medical University of Graz,Austria
文摘Photodynamic therapy(PDT) is a clinically approved procedure for treatment of cancer and infections. PDT involves systemic or topical administration of a photosensitizer(PS), followed by irradiation of the diseased area with light of a wavelength corresponding to an absorbance band of the PS. In the presence of oxygen, a photochemical reaction is initiated, leading to the generation of reactive oxygen species and cell death. Besides causing direct cytotoxic effects on illuminated tumor cells, PDT is known to cause damage to the tumor vasculature and induce the release of pro-inflammatory molecules. Pre-clinical and clinical studies have demonstrated that PDT is capable of affecting both the innate and adaptive arms of the immune system. Immune stimulatory properties of PDT may increase its beneficial effects giving the therapy wider potential to become more extensively used in clinical practice. Be-sides stimulating tumor-specific cytotoxic T-cells capable to destroy distant untreated tumor cells, PDT leads to development of anti-tumor memory immunity that can potentially prevent the recurrence of cancer. The immunological effects of PDT make the therapy more effective also when used for treatment of bacterial infections, due to an augmented infiltration of neutrophils into the infected regions that seems to potentiate the outcome of the treatment.
基金supported by the National Natural Science Foundation of China (No. 31971378, 81830002, 31870873 and 31991171)
文摘Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors.However,most patients cannot benefit from such therapies,mainly due to the intrinsic low immunogenicity of cancer cells(CCs)that allows them to escape recognition by immune cells of the body.Immunogenic cell death(ICD),which is a form of regulated cell death,engages in a complex dialogue between dying CCs and immune cells in the tumor microenvironment(TME),ultimately evoking the damage-associated molecular pattern(DAMP)signals to activate tumor-specific immunity.The ICD inducers mediate the death of CCs and improve both antigenicity and adjuvanticity.At the same time,they reprogram TME with a“cold-warmhot”immune status,ultimately amplifying and sustaining dendritic cell-and T cell-dependent innate sensing as well as the antitumor immune responses.In this review,we discuss how to stimulate ICD based upon the biological properties of CCs that have evolved under diverse stress conditions.Additionally,we highlight how this dynamic interaction contributes to priming tumor immunogenicity,thereby boosting anticancer immune responses.We believe that a deep understanding of these ICD processes will provide a framework for evaluating its vital role in cancer immunotherapy.
基金supported by the Tianjin UniversityaDouble First Classoconstruction talent start-up fund to Dr.Yan-Hua Gong,the grants awarded to Shi-Ke Hou by Science and Technology Commission of the CMC(c12019048)Ning Li by Open Fund of State Key Laboratory of Medicinal Chemical Biology(Nankai University)(2020010)。
文摘Background:Acute kidney injury(AKI)is the main life-threatening complication of crush syndrome(CS),and myoglobin is accepted as the main pathogenic factor.The pattern recognition receptor retinoicacid-inducible gene I(RIG-I)has been reported to exert anti-viral effects function in the innate immune response.However,it is not clear whether RIG-I plays a role in CS-AKI.The present research was carried out to explore the role of RIG-I in CS-AKI.Methods:Sprague-Dawley rats were randomly divided into two groups:the sham and CS groups(n=12).After administration of anesthesia,the double hind limbs of rats in the CS group were put under a pressure of 3 kg for 16 h to mimic crush conditions.The rats in both groups were denied access to food and water.Rats were sacrificed at 12 h or 36 h after pressure was relieved.The successful establishment of the CS-AKI model was confirmed by serum biochemical analysis and renal histological examination.In addition,RNA sequencing was performed on rat kidney tissue to identify molecular pathways involved in CS-AKI.Furthermore,NRK-52 E cells were treated with 200μmol/L ferrous myoglobin to mimic CS-AKI at the cellular level.The cells and cell supernatant samples were collected at 6 h or 24 h.Small interfering RNAs(siRNA)was used to knock down RIG-I expression.The relative expression levels of molecules involved in the RIG-I pathway in rat kidney or cells samples were measured by quantitative real-time PCR(qPCR),Western blotting analysis,and immunohistochemistry(IHC)staining.Tumor necrosis factor-α(TNF-α)was d etected by ELISA.Co-immunoprecipitation(Co-IP)assays were used to detect the interaction between RIG-I and myoglobin.Results:RNA sequencing of CS-AKI rat kidney tissue revealed that the different expression of RIG-I signaling pathway.qPCR,Western blotting,and IHC assays showed that RIG-I,nuclear factor kappa-B(NF-κB)P65,p-P65,and the a poptotic marker caspase-3 and cleaved caspase-3 were up-regulated in the CS group(P<0.05).However,the levels of interferon regulatory factor 3(IRF3),p-IRF3 and the antiviral factor interferon-beta(IFN-β)showed no significant c hanges between the sham and CS groups.Co-IP assays showed the interaction between RIG-I and myoglobin in the kidneys of the CS group.Depletion of RIG-I could alleviate the myoglobin induced expression of apoptosis-associated molecules via the NF-κB/caspase-3 axis.C onclusions:RIG-I is a novel damage-associated molecular patterns(DAMPs)sensor for myoglobin and participates in the NF-κB/caspase-3 signaling pathway in CS-AKI.In the development of CS-AKI,specific intervention in the RIG-I p athway might be a potential therapeutic strategy for CS-AKI.
基金Supported by The Canadian Cancer SocietyNo.#701132
文摘The main task of cancer vaccines is to deliver tumorspecifc antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic therapy (PDT)-generated vaccines as an example of autologous whole-cell cancer vaccines, the importance is discussed of the expression of death-associated molecules on cancer vaccine cells. This aspect appears critical for the optimal capture of vaccine cells by host’s sentinel phagocytes in order that the tumor antigenic material is processed and presented for immune recognition and elimination of targeted malignancy. It is shown that changing death pattern of vaccine cells by agents modulating apoptosis, autophagy or necrosis can significantly alter the therapeutic impact of PDT-generated vaccines. Improved therapeutic effect was observed with inhibitors of necrosis/necroptosis using IM-54, necrostatin-1 or necrostatin-7, as well as with lethal autophagy inducer STF62247. In contrast, reduced vaccine potency was found in case of treating vaccine cells with apoptosis inhibitors or lethal autophagy inhibitor spautin-1. Therefore, PDT-generated cancer vaccine cells undergoing apoptosis or lethal autophagy are much more likely to produce therapeutic benefit than vaccine cells that are necrotic. These fndings warrant further detailed examination of the strategy using cell death modulating agents for the enhancement of the efficacy of cancer vaccines.
基金supported by grant PID2021-126006OB-I00 to A.M.and L.J.grant PID20220-113588RB-I00 to S.M.-S+6 种基金funded by MCIN/AEI/10.13039/501100011033by ERDF A way of making Europe.D.J.B.supported by PRE2019-091276 and P.F.-C.by postdoctoral fellowships financially supported by the Severo Ochoa Program for Centres of Excellence in R&D(grants SEV-2016-0672 and CEX2020-000999-S)funded by MCIN/AEI/10.13039/501100011033.M.M.-D.was recipient of PhD fellow(PRE2019-08812)funded by MCIN/AEI/10.13039/501100011033.E.G.-Rwas supported by Autonomous Region of Madrid fellowship(S2017/BMD-3673)the European Commission-Next Generation EU(Regulation EU2020/2094)through CSIC’s Global Health Platform PTI Salud Global.
文摘Beyond their function as structural barriers,plant cell walls are essential elements for the adaptation of plants to environmental conditions.Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues.These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception.Plant cell wall damage caused by pathogen infection,wounding,or other stresses leads to the release of wall molecules,such as carbohydrates(glycans),that function as damage-associated molecular patterns(DAMPs).DAMPs are perceived by the extracellular ectodomains(ECDs)of pattern recognition receptors(PRRs)to activate pattern-triggered immunity(PTI)and disease resistance.Similarly,glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns(MAMPs)by specific ECD-PRRs triggering PTI responses.The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years.However,the structural mechanisms underlying glycan recognition by plant PRRs remain limited.Currently,this knowledge is mainly focused on receptors of the LysM-PRR family,which are involved in the perception of various molecules,such as chitooligosaccharides from fungi and lipo-chitooligosaccharides(i.e.,Nod/MYC factors from bacteria and mycorrhiza,respectively)that trigger differential physiological responses.Nevertheless,additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition.These include receptor kinases(RKs)with leucine-rich repeat and Malectin domains in their ECDs(LRR-MAL RKs),Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group(CrRLK1L)with Malectin-like domains in their ECDs,as well as wall-associated kinases,lectin-RKs,and LRR-extensins.The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception.The gained knowledge holds the potential to facilitate the development of sustainable,glycan-based crop protection solutions.
基金supported by the National Nature Science Foundation of China(No.21302052)the“Program for New Century Excellent Talents in University”awarded to ZHANG Jian(No.NECT-11-0739)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJKY19_0658)Jiangsu Funding Program for Excellent Postdoctoral Talent,and“Jiangsu Funding Program for Excellent Postdoctoral Talent”awarded to SHEN Pingping.
文摘In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliagnin B(a),camelliagnin A(b),16-O-angeloybarringtogenol C(c),theasapogenol E(d),theasapogenol F(e).Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites(a1−a6).The anti-inflammatory potential of these compounds was assessed using pathogenassociated molecular patterns(PAMPs)and damage-associated molecular patterns molecules(DAMPs)-mediated cellular inflammation models.Notably,compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide(LPS)and high-mobility group box 1(HMGB1)-induced inflammation,surpassing the efficacy of the standard anti-inflammatory agent,carbenoxolone.Conversely,compounds d,a3,and a6 selectivity targeted endogenous HMGB1-induced inflammation,showcasing a pronounced specificity.These results underscore the therapeutic promise of C.oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.