Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether m...Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether mitochondrial transcription factor A(TFAM),a key regulator of mitochondrial DNA transcription and replication,is involved in the initiation and progression of colitis-associated cancer(CAC).Methods:TFAM expression was examined in tissue samples of inflammatory bowel diseases(IBD)and CAC by immunohistochemistry.Intestinal epithelial cell(IEC)-specific TFAM-knockout mice(TFAM^(△IEC))and colorectal cancer(CRC)cells with TFAM knockdown or overexpression were used to evaluate the role of TFAMin colitis and the initiation and progression ofCAC.The underlying mechanisms of TFAMwere also explored by analyzingmitochondrial respiration function and biogenesis.Results:The expression of TFAM was downregulated in active IBD and negatively associated with the disease activity.The downregulation of TFAM in IECs was induced by interleukin-6 in a signal transducer and activator of transcription 3(STAT3)/miR-23b-dependent manner.In addition,TFAM knockout impaired IECturnover to promote dextran sulfate sodium(DSS)-induced colitis inmice.Of note,TFAMknockout increased the susceptibility of mice to azoxymethane/DSSinduced CAC and TFAM overexpression protected mice from intestinal inflammation and colitis-associated tumorigenesis.By contrast,TFAM expression was upregulated in CAC tissues and contributed to cell growth.Furthermore,it was demonstrated that β-catenin induced the upregulation of TFAM through c-Myc in CRC cells.Mechanistically,TFAMpromoted the proliferation of both IECs and CRC cells by increasing mitochondrial biogenesis and activity.Conclusions:TFAM plays a dual role in the initiation and progression of CAC,providing a novel understanding of CAC pathogenesis.展开更多
Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR3...Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury.展开更多
Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved...Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:82072722,81830070,81772935,81672340StateKey Laboratory ofCancer Biology Project,Grant/Award Number:CBSKL2019ZZ26。
文摘Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether mitochondrial transcription factor A(TFAM),a key regulator of mitochondrial DNA transcription and replication,is involved in the initiation and progression of colitis-associated cancer(CAC).Methods:TFAM expression was examined in tissue samples of inflammatory bowel diseases(IBD)and CAC by immunohistochemistry.Intestinal epithelial cell(IEC)-specific TFAM-knockout mice(TFAM^(△IEC))and colorectal cancer(CRC)cells with TFAM knockdown or overexpression were used to evaluate the role of TFAMin colitis and the initiation and progression ofCAC.The underlying mechanisms of TFAMwere also explored by analyzingmitochondrial respiration function and biogenesis.Results:The expression of TFAM was downregulated in active IBD and negatively associated with the disease activity.The downregulation of TFAM in IECs was induced by interleukin-6 in a signal transducer and activator of transcription 3(STAT3)/miR-23b-dependent manner.In addition,TFAM knockout impaired IECturnover to promote dextran sulfate sodium(DSS)-induced colitis inmice.Of note,TFAMknockout increased the susceptibility of mice to azoxymethane/DSSinduced CAC and TFAM overexpression protected mice from intestinal inflammation and colitis-associated tumorigenesis.By contrast,TFAM expression was upregulated in CAC tissues and contributed to cell growth.Furthermore,it was demonstrated that β-catenin induced the upregulation of TFAM through c-Myc in CRC cells.Mechanistically,TFAMpromoted the proliferation of both IECs and CRC cells by increasing mitochondrial biogenesis and activity.Conclusions:TFAM plays a dual role in the initiation and progression of CAC,providing a novel understanding of CAC pathogenesis.
基金supported by the National Notural Science Foundation of China,Nos.82071556 and 82271291 (both to WM)
文摘Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury.
文摘Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.