Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegrade...Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegraded oil from multiple sources has always been a hard nut to crack.Rising to this challenge,in this study-we carried out a comprehensive investigation of biodegradation impacts,oil-source correlation,and oil charging history to trace the source and reveal the mixing process of biodegraded oil in the Toutunhe Formation(J_(2)t)in the eastern Junggar Basin,NW China.The oil of this area was biodegraded to different extent,consequently,many commonly used biomarker parameters(e.g.Pr/Ph,Pr/n C_(17))became less powerful for oil-source correlation.To address this problem,the resistance of many biomarkers to biodegradation was analyzed,and those of high bio resistance were selected to generate a more reliable oil-source correlation.The results revealed that biodegraded oil was a mixture of oil sourced from Lucaogou Formation(P_(2)l)and Xiaoquangou Formation(T_(2-3)xq).Core sample observation,microscopic fluorescent analysis and fluid inclusion analysis were combined to analyze comprehensively oil charging history.The analysis of accumulation process exhibited that the existing oil in J_(2)t was a mixture originated from the P_(2)l and T_(2-3)xq source rocks in two separate charging stages when it underwent a complicated process of charging,biodegradation,recharging and mixing.展开更多
Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half cen...Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half century, a huge amount of data and knowledge has been accumulated from theoretical and experimental studies on micromixing. Nevertheless, those results are mostly composites of simplified theoretical and empirical models, and the true nature of interactions of flow inhomogeneity and micro-mixing with chemical reaction has not been fully unveiled. This article reviews the progress in micro-mixing study in chemical reactors to date. A few important topics related to the nature, experimental evaluation, and numerical simulation of micro-mixing are addressed.Some suggestions are given hopefully to motivate more chemical engineers to devote their efforts to better understanding of micro-mixing in chemical reactors.展开更多
Objective] The aim was to explain the accumulation characteristic of mineral elements in alpine grassland plants and the effect of supplementary supply on the nutrient changes of mineral elements. [Method] Potted Poa ...Objective] The aim was to explain the accumulation characteristic of mineral elements in alpine grassland plants and the effect of supplementary supply on the nutrient changes of mineral elements. [Method] Potted Poa crymophila cv. Qinghai plants were regularly applied with liquid mineral mixed fertilizers, and samples were collected for analysis and detection. [Result] After the regular spraying of liquid mineral mixed fertilizers, the mineral elements in potted P. crymophila and its soil reduced ( P 〈0.05), but the accumulation of corresponding mineral elements of P. crymophila in the control group was increased due to the "Starvation Effect", which was one of the endogenetic forces driving the increase in the accumulation of mineral elements. [Conclusion] This study is of great significance for the study of the accumulation of mineral elements in degraded grassland plants and its dynamic mechanism, as well as testing the hypothesis of the Starvation Effect of mineral elements. In addition, it also provides scientific bases and technical support for the restoration and remediation of degraded grassland and the development of ecological livestock husbandry.展开更多
The produced oils in central Junggar Basin are commonly mixed in origin.In this paper,in order to reveal this complexity and thereby provide valuable clues to the study of oil source and formation mechanism,genetic gr...The produced oils in central Junggar Basin are commonly mixed in origin.In this paper,in order to reveal this complexity and thereby provide valuable clues to the study of oil source and formation mechanism,genetic groups of the mixed oils were classified and their migration/accumulation was investigated.Based on the artificial oil mixing experiments,some representative biomarkers of the mixed oils showed varying tendencies according to mixing ratios of the oils.Hence,these biomarkers are useful for determining the origin of the mixed oils.According to the criteria,oils in the area were divided into four basic groups,i.e.,the Lower Permian Fengcheng oil,the Middle Permian Lower Wuerhe oil,the Jurassic source derived oil,and the mixed oil(including the Lower and Middle Permian mixed oil and the Permian and Jurassic mixed oil).Oil migration and accumulation were discussed in combination with the geological background.展开更多
基金supported by a grant from National Science Foundation for Young Scientists of China(Grant No.41702143)Natural Science Foundation of Shandong Province of China(ZR2016DL06+3 种基金ZR2017LD005)the Fundamental Research Funds for the Central Universities(17CX02006A)the Foundation of Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Mineral(DMSM2017063)the major science and technology project of Xinjiang Petroleum Administration Bureau of CNPC(2017E-0401)。
文摘Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegraded oil from multiple sources has always been a hard nut to crack.Rising to this challenge,in this study-we carried out a comprehensive investigation of biodegradation impacts,oil-source correlation,and oil charging history to trace the source and reveal the mixing process of biodegraded oil in the Toutunhe Formation(J_(2)t)in the eastern Junggar Basin,NW China.The oil of this area was biodegraded to different extent,consequently,many commonly used biomarker parameters(e.g.Pr/Ph,Pr/n C_(17))became less powerful for oil-source correlation.To address this problem,the resistance of many biomarkers to biodegradation was analyzed,and those of high bio resistance were selected to generate a more reliable oil-source correlation.The results revealed that biodegraded oil was a mixture of oil sourced from Lucaogou Formation(P_(2)l)and Xiaoquangou Formation(T_(2-3)xq).Core sample observation,microscopic fluorescent analysis and fluid inclusion analysis were combined to analyze comprehensively oil charging history.The analysis of accumulation process exhibited that the existing oil in J_(2)t was a mixture originated from the P_(2)l and T_(2-3)xq source rocks in two separate charging stages when it underwent a complicated process of charging,biodegradation,recharging and mixing.
基金Supported by the National Natural Science Foundation of China(21376243,91434126)National Key Research and Development Program(2016YFB0301702)+1 种基金the State Key Development Program for Basic Research of China(2012CB224806)Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half century, a huge amount of data and knowledge has been accumulated from theoretical and experimental studies on micromixing. Nevertheless, those results are mostly composites of simplified theoretical and empirical models, and the true nature of interactions of flow inhomogeneity and micro-mixing with chemical reaction has not been fully unveiled. This article reviews the progress in micro-mixing study in chemical reactors to date. A few important topics related to the nature, experimental evaluation, and numerical simulation of micro-mixing are addressed.Some suggestions are given hopefully to motivate more chemical engineers to devote their efforts to better understanding of micro-mixing in chemical reactors.
基金Supported by the General Program of Natural Science Foundation of Qinghai Province(2016-ZJ-906)
文摘Objective] The aim was to explain the accumulation characteristic of mineral elements in alpine grassland plants and the effect of supplementary supply on the nutrient changes of mineral elements. [Method] Potted Poa crymophila cv. Qinghai plants were regularly applied with liquid mineral mixed fertilizers, and samples were collected for analysis and detection. [Result] After the regular spraying of liquid mineral mixed fertilizers, the mineral elements in potted P. crymophila and its soil reduced ( P 〈0.05), but the accumulation of corresponding mineral elements of P. crymophila in the control group was increased due to the "Starvation Effect", which was one of the endogenetic forces driving the increase in the accumulation of mineral elements. [Conclusion] This study is of great significance for the study of the accumulation of mineral elements in degraded grassland plants and its dynamic mechanism, as well as testing the hypothesis of the Starvation Effect of mineral elements. In addition, it also provides scientific bases and technical support for the restoration and remediation of degraded grassland and the development of ecological livestock husbandry.
基金funded by the National Natural Science Foundation of China (Grant Nos. 40602014 and 40872086)
文摘The produced oils in central Junggar Basin are commonly mixed in origin.In this paper,in order to reveal this complexity and thereby provide valuable clues to the study of oil source and formation mechanism,genetic groups of the mixed oils were classified and their migration/accumulation was investigated.Based on the artificial oil mixing experiments,some representative biomarkers of the mixed oils showed varying tendencies according to mixing ratios of the oils.Hence,these biomarkers are useful for determining the origin of the mixed oils.According to the criteria,oils in the area were divided into four basic groups,i.e.,the Lower Permian Fengcheng oil,the Middle Permian Lower Wuerhe oil,the Jurassic source derived oil,and the mixed oil(including the Lower and Middle Permian mixed oil and the Permian and Jurassic mixed oil).Oil migration and accumulation were discussed in combination with the geological background.