In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of thi...In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.展开更多
Considering actual construction conditions of Binchuan-Heqing Highway,this paper provides the C50 mix ratio conforming to engineering requirements by strictly controlling the quality of raw materials,optimizing the de...Considering actual construction conditions of Binchuan-Heqing Highway,this paper provides the C50 mix ratio conforming to engineering requirements by strictly controlling the quality of raw materials,optimizing the design of mix ratio scientifically,preparing superior C50 concrete 0 with manufactured sand,and optimizing the concrete mix ratio based on the adjustment of fly ash replacement,water-cement ratio,polycarboxylate-type water reducer mixing amount,sand ratio,etc.The result indicates that,the water-cement ratio has a great influence on the concrete strength,and if the ratio of coal ash is high in the binding material,the early compressive strength of the concrete will increase slowly.展开更多
As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)co...As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)columns subjected to eccentric load was reported.In this study,21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors.Recycled coarse aggregate replacement ratio,concrete strength grade,length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests.The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on ecentric load-bearing capacity of RSCCFCST columns.The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade.With increase of eccentric distance,the ductility of specimens increases while the bearing capacity decreases.Moreover,a phenomenological model of RSCCFCST columns is proposed,which exhibits versatile ability to capture the process during loading.The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.展开更多
文摘In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.
文摘Considering actual construction conditions of Binchuan-Heqing Highway,this paper provides the C50 mix ratio conforming to engineering requirements by strictly controlling the quality of raw materials,optimizing the design of mix ratio scientifically,preparing superior C50 concrete 0 with manufactured sand,and optimizing the concrete mix ratio based on the adjustment of fly ash replacement,water-cement ratio,polycarboxylate-type water reducer mixing amount,sand ratio,etc.The result indicates that,the water-cement ratio has a great influence on the concrete strength,and if the ratio of coal ash is high in the binding material,the early compressive strength of the concrete will increase slowly.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51578001,51608003,and 51878002)Natural Science Foundation granted by Department of Education,Anhui Province(No.KJ2015ZD10)+2 种基金Key Research and Development Plan of Anhui Province(No.1704a0802131)the Outstanding Young Talent Support Program of Anhui Province(No.gxyqZD2016072)This work was also supported by the Graduate Innovation Research Foundation granted by Anhui University of Technology(Nos.2016097,2016094).
文摘As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)columns subjected to eccentric load was reported.In this study,21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors.Recycled coarse aggregate replacement ratio,concrete strength grade,length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests.The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on ecentric load-bearing capacity of RSCCFCST columns.The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade.With increase of eccentric distance,the ductility of specimens increases while the bearing capacity decreases.Moreover,a phenomenological model of RSCCFCST columns is proposed,which exhibits versatile ability to capture the process during loading.The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.