为提高元分类器的预测精度,在基于分类器类向量输出的Stacking算法基础上,提出一种基于熵权法的堆叠泛化算法E-Stacking (Stacking based entropy),对于基分类器的输出类别,引入一种熵权法ELFMF (label frequency and mistake frequency...为提高元分类器的预测精度,在基于分类器类向量输出的Stacking算法基础上,提出一种基于熵权法的堆叠泛化算法E-Stacking (Stacking based entropy),对于基分类器的输出类别,引入一种熵权法ELFMF (label frequency and mistake frequency based entropy)。通过考虑基分类器预测结果出现的频率及错误率,以及预测结果在各个类别中的分散度,增强多个元分类器成员之间的差异性,增加堆叠算法的泛化效果。实验结果表明,与传统及各种改进的Stacking算法相比,该算法有效提高了预测精度且更具有适用性。展开更多
文摘为提高元分类器的预测精度,在基于分类器类向量输出的Stacking算法基础上,提出一种基于熵权法的堆叠泛化算法E-Stacking (Stacking based entropy),对于基分类器的输出类别,引入一种熵权法ELFMF (label frequency and mistake frequency based entropy)。通过考虑基分类器预测结果出现的频率及错误率,以及预测结果在各个类别中的分散度,增强多个元分类器成员之间的差异性,增加堆叠算法的泛化效果。实验结果表明,与传统及各种改进的Stacking算法相比,该算法有效提高了预测精度且更具有适用性。