Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton cata...Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.展开更多
By using the bimodal mesoporous silica(BMMS) as the carrier and butyl titanate as the titanium source, the TiO_2/BMMS catalyst was prepared. The samples were characterized by XRD, XRF, N_2 adsorption and desorption, F...By using the bimodal mesoporous silica(BMMS) as the carrier and butyl titanate as the titanium source, the TiO_2/BMMS catalyst was prepared. The samples were characterized by XRD, XRF, N_2 adsorption and desorption, FTIR, UVvis,SEM, EDS, and TEM techniques. The test results showed that TiO_2 was amorphous, the TiO_2/BMMS catalyst had an ordered bimodal mesoporous structure, and the chemical interaction existed between BMMS and TiO_2. Since the TiO_2/BMMS had a lower band gap, its photocatalytic activity was better than TiO_2. Under UV irradiation a one-pot PODS system was set up, using TiO_2/BMMS as the catalyst, H_2O_2 as the oxidant, and methanol as the solvent. The TiO_2/BMMS catalyst showed better photocatalytic activity than the mono-modal mesoporous TiO_2/SBA-15 catalyst, and the desulfurization rate of dibenzothiophene(DBT) over TiO_2/BMMS catalyst could reach 99._2%. The TiO_2/BMMS catalyst also had so good stability that the desulfurization rate of DBT did not drop apparently after 8 cycles of reusing, and could still be close to 90%.展开更多
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult...TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.展开更多
Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporo...Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporous TiO2) with superior photocatalytic hydrogen evolution capability through the synergistic impact of NiS/Ni3S4 (NiSx) cocatalyst and efficient hole scavenger has been demonstrated. The photocatalytic hydrogen evolution of TiO2-NiSx hybrids with the different content of NiSx and upon different organic hole scavengers was both investigated. The hybrid of TiO2 decorated with 3%(mole ratio of Ni^2+) NiSx cocatalyst in methanol solution showed the optimal photocatalytic hydrogen evolution rate of 981.59 μmol h^-1 g^-1 which was about 20 times higher than that of bare mesoporous TiO2. Our results suggested that the boosted hydrogen production performance is attributed to both the improved photoinduced electrons migration between NiS and Ni3S4 in cocatalyst and the high hole captured efficiency by hole scavengers of methanol.展开更多
Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminesce...Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminescence (TRPL) spectra revealed that the TiO2 NSs are more effective than TiO2 nanoparticles in accepting electrons from perovskite. Moreover. the TiO2 nanospindles further endowed the PSCs with good reproducibility and suppressed hysteresis. The best device with TiO2 NSs as ETMs yielded power conversion efficiency (PCE) of 19.6%, demonstrating that the home-made TiO2 NSs is a good ETM for PSCs.展开更多
Currently, lithium–sulfur batteries su er from several critical limitations that hinder their practical application, such as the large volumetric expansion of electrode, poor conductivity and lower sulfur utilization...Currently, lithium–sulfur batteries su er from several critical limitations that hinder their practical application, such as the large volumetric expansion of electrode, poor conductivity and lower sulfur utilization. In this work, TiO2 nanofibers with mesoporous structure have been synthesized by electrospinning and heat treating. As the host material of cathode for Li–S battery, the as prepared samples with novelty structure could enhance the conductivity of cathode composite, promote the utilization of sulfur, and relieve volume expansion for improving the electrochemical property. The initial discharge capacity of TiO2/S composite cathode is 703 mAh/g and the capacity remained at 652 mAh/g after 200 cycles at 0.1 C, whose the capacity retention remains is at 92.7%, demonstrating great prospect for application in high-performance Li–S batteries.展开更多
We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene h...We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene hybrid(VTH)features unique structures with an ultra-large specific surface area of^260 m^2 g^-1 and low aggregation,giving rise to enhanced light harvesting and increased charge generation and separation efficiency.It was observed that a mesoporous film with uniform pore distribution is simultaneously obtained during the VTH growth process.When a 5.0 wt%RGO VTH film was used as the active layer in photocatalysis,the highest photocatalytic activity for degradation of methyl orange was achieved.For another,when a 0.75 wt%RGO VTH film was used as the photoanode in a dye-sensitized solar cell,the power conversion efficiency reached 7.58%,which represents an increase of 73.1%compared to a solar cell using an a photoanode of pure TiO2 synthesized by a traditional solvothermal method.It is expected that this facile method for the synthesis of TiO2/graphene hybrid mesoporous films will be useful in practical applications for preparing other metal oxide/graphene hybrids with ultra-high photocatalytic activity and photovoltaic performance.展开更多
Ag loaded mesoporous silica-embedded TiO_2 nanocomposites were successfully synthesized via two different routes,including one-pot solvothermal method and solvothermal-chemical reduction method,both using Titanium(Ⅳ...Ag loaded mesoporous silica-embedded TiO_2 nanocomposites were successfully synthesized via two different routes,including one-pot solvothermal method and solvothermal-chemical reduction method,both using Titanium(Ⅳ) n-butoxide(Ti(OC_4H_9)_4) as a precursor,formic acid as a solvent and reducing agent,silver nitrate as a silver source and tetraethyl silicate(TEOS) as a stabilizer.The transmission electron microscopic(TEM) images showed that silica-embedded anatase TiO_2 sample exhibited approximately rhombic shape and Ag nanoparticles could be embedded into the nanocomposites or deposited on the surface with high dispersion.The N_2 adsorption-desorption isotherms indicated that the silica-embedded anatase TiO_2 had obvious mesoporous structure with a BET specific surface area of 203.5 m^2·g^-1.All Ag loaded silica-embedded TiO_2composites showed a higher photocatalytic H2-generation activity from water splitting under simulative solar light irradiation than that of TiO2 products.The maximum H_2 production rate(6.10 mmol·h^-1·g^-1) was obtained over 2%Ag/silica-embedded TiO2 nanocomposites(2%Ag/MST) prepared by solvothermal-chemical reduction method,which was 20 times that achieved on the silica-embedded TiO2 sample.The enhanced photocatalytic H2-evolution activity of Ag loaded mesoporous silica-embedded TiO2 nanocomposites can be attributed to the multi-function of surface Ag co-catalyst,mesoporous structure,and embedding of silica.展开更多
The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission elect...The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission electron microscopy(HR-TEM) and N2 adsorption desorption and adsorption are used to study the effects of the synthesized process condition on the microstructure of the as-synthesized mesoporous Ti O2. The photocatalytic performances of as-synthesized samples are evaluated by the degradation of the formaldehyde under ultraviolet light irradiations. The results demonstrate that the as-synthesized mesoporous Ti O2 are anatase with the uniform size about 20-40 nm. The sample is prepared using cetyltrimethyl ammonium bromide(CTAB) as the template with average pore size distribution of 8.12 nm, specific surface area of 68.47 m2/g and pore volume of 0.213 m L/g. The samples show decomposition of formaldehyde 95.8% under ultraviolet light irradiations for 90 min. These results provide a basic experimental process for preparation mesoporous Ti O2, which will posses a broad prospect in terms of the applications in improving indoor air quality.展开更多
An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance ...An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance to H2O and SO2of Fe/TiO2prepared by a template method were better than those of catalysts synthesized using impregnation and coprecipitation.The samples were characterized using N2‐physisorption,transmission electron microscopy,ultraviolet‐visibl spectroscopy,X‐ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fouriertransform spectroscopy.The results showed that Pluronic F127acted as a structural and chemical promoter;it not only promoted the formation of a uniform mesoporous structure,leading to a higher surface area,but also improved dispersion of the active phase.In addition,the larger number of Lewis acidic sites,indicated by the presence of coordinated NH3species(1188cm-1)and the N–H stretching modes of coordinated NH3(3242and3388cm-1),were beneficial to mid‐temperature selective catalytic reduction reactions.展开更多
Mesoporous TiO_2-B/anatase microparticles have been in-situ synthesized from K_2Ti_2O_5 without template.The TiO_2-B phase around the particle surface accelerates the diffusion of charges through the interface,while t...Mesoporous TiO_2-B/anatase microparticles have been in-situ synthesized from K_2Ti_2O_5 without template.The TiO_2-B phase around the particle surface accelerates the diffusion of charges through the interface,while the anatase phase in the core maintains the capacity stability.The heterojunction interface between the main polymorph of anatase and the trace of TiO_2-B exhibits promising lithium ion battery performance.This trace of 5%(by mass) TiO_2-B determined by Raman spectra brings the first discharge capacity of this material to 247 mA · h ·g^(-1),giving 20%improvement compared to the anatase counterpart Stability testing at 1 C reveals that the capacity maintains at 171 mA·h·^(-1),which is better than 162 mA·h·g^(-1) for single phase anatase or 159 mA·h·g^(-1) for TiO_2-B.The mesoporous TiO_2-B/anatase rnicroparticles also show superior rate performance with 100 mA·h·g^(-1) at 40 C,increased by nearly 25%as compared to pure anatase.This opens a possibility of a general design route,which can be applied to other metal oxide electrode materials for rechargeable batteries and supercapacitors.展开更多
Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping t...Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell.展开更多
In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were ...In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity.展开更多
Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(X...Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),N2 absorption-desorption,ultraviolet visible light spectroscopy(UV-Vis) and electrochemical spectroscopy.The results show that the mesoporous structure of the product with ethanol is composed of anatase laced crystal walls with amorphous grain boundaries formed gradually by degradation.Compared with those without ethanol,these samples possess larger crystallite size since ethanol decreases the pore size at higher temperature.With the increase of ethanol amount,however,the crystallite size will grow.The amorphous grain boundaries in the mesoporous material,with a large impedance and low incidental cyclic potential,are difficult to effectively degrade and the phase transformation temperature is changed from 500 to 550℃.The growth rate of Al-TiO2 crystallites that obeys the quadratic polynomial equation may be controlled.展开更多
The adsorption of mesoporous Fe3O4–SiO2–TiO2(MFST), which can be separated easily from solution by a magnet, for the removal of methyl orange(MO) was investigated. The nitrogen adsorption–desorption measurement sho...The adsorption of mesoporous Fe3O4–SiO2–TiO2(MFST), which can be separated easily from solution by a magnet, for the removal of methyl orange(MO) was investigated. The nitrogen adsorption–desorption measurement shows successful synthesis of MFST with an average pore size of 3.8 nm and a large specific surface area of55 m2·g-1. About 95% adsorption percentage of MO is achieved with an initial concentration of 10 mg·L-1in the dark and the MFST exhibits superior adsorption ability under acid conditions. The adsorption data fit well with the pseudo-second order model for adsorption. After 4 cycles, the adsorption rate for MO remains 74% in the dark and the MFST can be recovered in a magnetic field with a recovery of about 80 %(by mass). It demonstrates that the samples have significant value on applications of wastewater treatment.展开更多
A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 &#176;C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonate...A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 &#176;C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.展开更多
基金supported by the National Natural Science Foundation of China(21876114,21761142011,51572174)Shanghai Government(17SG44)+2 种基金International Joint Laboratory on Resource Chemistry(IJLRC)Ministry of Education of China(PCSIRT_IRT_16R49)supported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning and Shuguang Research Program of Shanghai Education Committee~~
文摘Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.
基金financially supported by the Program for Liaoning Excellent Talents in University,abbreviated as“LNET”(LJQ2015062)Program for Science and Technology Agency of Liaoning Province(20170540585)+1 种基金General Scientific Research Project of Liaoning Provincial Department of Education(L2015296,L2016018)Science and Technology Planning project of Fushun(FSKJHT201376)
文摘By using the bimodal mesoporous silica(BMMS) as the carrier and butyl titanate as the titanium source, the TiO_2/BMMS catalyst was prepared. The samples were characterized by XRD, XRF, N_2 adsorption and desorption, FTIR, UVvis,SEM, EDS, and TEM techniques. The test results showed that TiO_2 was amorphous, the TiO_2/BMMS catalyst had an ordered bimodal mesoporous structure, and the chemical interaction existed between BMMS and TiO_2. Since the TiO_2/BMMS had a lower band gap, its photocatalytic activity was better than TiO_2. Under UV irradiation a one-pot PODS system was set up, using TiO_2/BMMS as the catalyst, H_2O_2 as the oxidant, and methanol as the solvent. The TiO_2/BMMS catalyst showed better photocatalytic activity than the mono-modal mesoporous TiO_2/SBA-15 catalyst, and the desulfurization rate of dibenzothiophene(DBT) over TiO_2/BMMS catalyst could reach 99._2%. The TiO_2/BMMS catalyst also had so good stability that the desulfurization rate of DBT did not drop apparently after 8 cycles of reusing, and could still be close to 90%.
基金financially supported by the National Key R & D Projects (Nos. 2021YFC1910504, 2019YFC1907101, 2019YFC1907103, and 2017YFB0702304)the Key R & D Project in Ningxia Hui Autonomous Region, China (No. 2020BCE01001)+6 种基金the Key and Normal Projects National Natural Science Foundation of China (Nos. U2002212 and 51672024)the Xijiang Innovation and Entrepreneurship Team (No. 2017A0109004)the Fundamental Research Funds for the Central Universities (Nos. FRF-BD-20-24A, FRF-TP-20-031A1, FRF-IC-19-017Z, FRF-GF-19-032B, and 06500141)the Integration of Green Key Process Systems MIIT, Natural Science Foundation of Beijing Municipality (No. 2214073)the Guangdong Basic and Applied Research Foundation, China (No. 2020A1515110408)the Foshan Science and Technology Innovation Special Foundation, China (No. BK21BE002)the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH004)
文摘TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.
基金the National Natural Science Foundation of China(21501137)the Hubei Natural Science Foundation for financial support(2018CFB680)Support from the Australian Research Council(ARC)through ARC Discovery projects(DP130102699,DP 130102274,DP160102627)
文摘Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporous TiO2) with superior photocatalytic hydrogen evolution capability through the synergistic impact of NiS/Ni3S4 (NiSx) cocatalyst and efficient hole scavenger has been demonstrated. The photocatalytic hydrogen evolution of TiO2-NiSx hybrids with the different content of NiSx and upon different organic hole scavengers was both investigated. The hybrid of TiO2 decorated with 3%(mole ratio of Ni^2+) NiSx cocatalyst in methanol solution showed the optimal photocatalytic hydrogen evolution rate of 981.59 μmol h^-1 g^-1 which was about 20 times higher than that of bare mesoporous TiO2. Our results suggested that the boosted hydrogen production performance is attributed to both the improved photoinduced electrons migration between NiS and Ni3S4 in cocatalyst and the high hole captured efficiency by hole scavengers of methanol.
基金supported by the National Natural Science Foundation of China(Grand No.21773128)Key Research and Development Projects of Sichuan Province(Grand No.2017GZ0052)+1 种基金National Postdoctoral Program for Innovative Talents(BX201600138)Anshan Hifichem Co.,Ltd
文摘Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminescence (TRPL) spectra revealed that the TiO2 NSs are more effective than TiO2 nanoparticles in accepting electrons from perovskite. Moreover. the TiO2 nanospindles further endowed the PSCs with good reproducibility and suppressed hysteresis. The best device with TiO2 NSs as ETMs yielded power conversion efficiency (PCE) of 19.6%, demonstrating that the home-made TiO2 NSs is a good ETM for PSCs.
基金Supported by National Nature Science Foundation of China(Grant No.61774022)Education Department of Jilin Province of China(Grant No.JJKH20181030KJ)
文摘Currently, lithium–sulfur batteries su er from several critical limitations that hinder their practical application, such as the large volumetric expansion of electrode, poor conductivity and lower sulfur utilization. In this work, TiO2 nanofibers with mesoporous structure have been synthesized by electrospinning and heat treating. As the host material of cathode for Li–S battery, the as prepared samples with novelty structure could enhance the conductivity of cathode composite, promote the utilization of sulfur, and relieve volume expansion for improving the electrochemical property. The initial discharge capacity of TiO2/S composite cathode is 703 mAh/g and the capacity remained at 652 mAh/g after 200 cycles at 0.1 C, whose the capacity retention remains is at 92.7%, demonstrating great prospect for application in high-performance Li–S batteries.
文摘We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene hybrid(VTH)features unique structures with an ultra-large specific surface area of^260 m^2 g^-1 and low aggregation,giving rise to enhanced light harvesting and increased charge generation and separation efficiency.It was observed that a mesoporous film with uniform pore distribution is simultaneously obtained during the VTH growth process.When a 5.0 wt%RGO VTH film was used as the active layer in photocatalysis,the highest photocatalytic activity for degradation of methyl orange was achieved.For another,when a 0.75 wt%RGO VTH film was used as the photoanode in a dye-sensitized solar cell,the power conversion efficiency reached 7.58%,which represents an increase of 73.1%compared to a solar cell using an a photoanode of pure TiO2 synthesized by a traditional solvothermal method.It is expected that this facile method for the synthesis of TiO2/graphene hybrid mesoporous films will be useful in practical applications for preparing other metal oxide/graphene hybrids with ultra-high photocatalytic activity and photovoltaic performance.
基金Funded by Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘Ag loaded mesoporous silica-embedded TiO_2 nanocomposites were successfully synthesized via two different routes,including one-pot solvothermal method and solvothermal-chemical reduction method,both using Titanium(Ⅳ) n-butoxide(Ti(OC_4H_9)_4) as a precursor,formic acid as a solvent and reducing agent,silver nitrate as a silver source and tetraethyl silicate(TEOS) as a stabilizer.The transmission electron microscopic(TEM) images showed that silica-embedded anatase TiO_2 sample exhibited approximately rhombic shape and Ag nanoparticles could be embedded into the nanocomposites or deposited on the surface with high dispersion.The N_2 adsorption-desorption isotherms indicated that the silica-embedded anatase TiO_2 had obvious mesoporous structure with a BET specific surface area of 203.5 m^2·g^-1.All Ag loaded silica-embedded TiO_2composites showed a higher photocatalytic H2-generation activity from water splitting under simulative solar light irradiation than that of TiO2 products.The maximum H_2 production rate(6.10 mmol·h^-1·g^-1) was obtained over 2%Ag/silica-embedded TiO2 nanocomposites(2%Ag/MST) prepared by solvothermal-chemical reduction method,which was 20 times that achieved on the silica-embedded TiO2 sample.The enhanced photocatalytic H2-evolution activity of Ag loaded mesoporous silica-embedded TiO2 nanocomposites can be attributed to the multi-function of surface Ag co-catalyst,mesoporous structure,and embedding of silica.
基金Projects(51102026,51272032) supported by the Program for the National Natural Science Foundation of ChinaProject(11A014) supported by the Scientific Research Fund of Hunan Provincial Education DepartmentProject supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province,China
文摘The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission electron microscopy(HR-TEM) and N2 adsorption desorption and adsorption are used to study the effects of the synthesized process condition on the microstructure of the as-synthesized mesoporous Ti O2. The photocatalytic performances of as-synthesized samples are evaluated by the degradation of the formaldehyde under ultraviolet light irradiations. The results demonstrate that the as-synthesized mesoporous Ti O2 are anatase with the uniform size about 20-40 nm. The sample is prepared using cetyltrimethyl ammonium bromide(CTAB) as the template with average pore size distribution of 8.12 nm, specific surface area of 68.47 m2/g and pore volume of 0.213 m L/g. The samples show decomposition of formaldehyde 95.8% under ultraviolet light irradiations for 90 min. These results provide a basic experimental process for preparation mesoporous Ti O2, which will posses a broad prospect in terms of the applications in improving indoor air quality.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA07030300)~~
文摘An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance to H2O and SO2of Fe/TiO2prepared by a template method were better than those of catalysts synthesized using impregnation and coprecipitation.The samples were characterized using N2‐physisorption,transmission electron microscopy,ultraviolet‐visibl spectroscopy,X‐ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fouriertransform spectroscopy.The results showed that Pluronic F127acted as a structural and chemical promoter;it not only promoted the formation of a uniform mesoporous structure,leading to a higher surface area,but also improved dispersion of the active phase.In addition,the larger number of Lewis acidic sites,indicated by the presence of coordinated NH3species(1188cm-1)and the N–H stretching modes of coordinated NH3(3242and3388cm-1),were beneficial to mid‐temperature selective catalytic reduction reactions.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT 0732)the National Natural Science Foundation of China(21136004,20736002,21176113,20876073)+2 种基金NSFC-RGC(20731160614)China Postdoctoral Science Foundation(20110491407)the National Basic Research Program of China(2009CB623407,2009CB219902 and 2009CB226103)
文摘Mesoporous TiO_2-B/anatase microparticles have been in-situ synthesized from K_2Ti_2O_5 without template.The TiO_2-B phase around the particle surface accelerates the diffusion of charges through the interface,while the anatase phase in the core maintains the capacity stability.The heterojunction interface between the main polymorph of anatase and the trace of TiO_2-B exhibits promising lithium ion battery performance.This trace of 5%(by mass) TiO_2-B determined by Raman spectra brings the first discharge capacity of this material to 247 mA · h ·g^(-1),giving 20%improvement compared to the anatase counterpart Stability testing at 1 C reveals that the capacity maintains at 171 mA·h·^(-1),which is better than 162 mA·h·g^(-1) for single phase anatase or 159 mA·h·g^(-1) for TiO_2-B.The mesoporous TiO_2-B/anatase rnicroparticles also show superior rate performance with 100 mA·h·g^(-1) at 40 C,increased by nearly 25%as compared to pure anatase.This opens a possibility of a general design route,which can be applied to other metal oxide electrode materials for rechargeable batteries and supercapacitors.
文摘Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell.
基金Supported by the National Basic Research Program of China (No. 2009CB320300)National Natural Science Foundation of China (No. 61072023)National High Technology Research and Development Programs (No.2012AA040506, No. 2012AA101608)
文摘In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity.
基金Supported by the National Natural Science Foundation of China (21061006) the Research of Natural Science and Technology Foundation of Guizhou Province ([2010]2006) the Graduate Scientific Innovation Project of Education Department of Guangxi Autonomous Region (1059330901009)
文摘Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),N2 absorption-desorption,ultraviolet visible light spectroscopy(UV-Vis) and electrochemical spectroscopy.The results show that the mesoporous structure of the product with ethanol is composed of anatase laced crystal walls with amorphous grain boundaries formed gradually by degradation.Compared with those without ethanol,these samples possess larger crystallite size since ethanol decreases the pore size at higher temperature.With the increase of ethanol amount,however,the crystallite size will grow.The amorphous grain boundaries in the mesoporous material,with a large impedance and low incidental cyclic potential,are difficult to effectively degrade and the phase transformation temperature is changed from 500 to 550℃.The growth rate of Al-TiO2 crystallites that obeys the quadratic polynomial equation may be controlled.
基金Supported by the National Natural Science Foundation of China(2011011013-2)the Youth Foundation of Science and Technology Agency of Shanxi Province,China(2011021020-2)
文摘The adsorption of mesoporous Fe3O4–SiO2–TiO2(MFST), which can be separated easily from solution by a magnet, for the removal of methyl orange(MO) was investigated. The nitrogen adsorption–desorption measurement shows successful synthesis of MFST with an average pore size of 3.8 nm and a large specific surface area of55 m2·g-1. About 95% adsorption percentage of MO is achieved with an initial concentration of 10 mg·L-1in the dark and the MFST exhibits superior adsorption ability under acid conditions. The adsorption data fit well with the pseudo-second order model for adsorption. After 4 cycles, the adsorption rate for MO remains 74% in the dark and the MFST can be recovered in a magnetic field with a recovery of about 80 %(by mass). It demonstrates that the samples have significant value on applications of wastewater treatment.
基金Supported by the National Natural Science Foundation of China(21276076)the Fundamental Research Funds for the Central Universities of China(WA1014003)State Key Laboratory of Chemical Engineering(SKL-ChE-10C06)
文摘A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 &#176;C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.