Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal...Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.展开更多
The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaens...The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.展开更多
In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of den...In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of denial-of-service attacks and deception attacks,and they are described by two groups of independent Bernoulli distributions.On this foundation,via the Lyapunov stability theory and linear matrix inequality technology,the H_(∞)/passive-based performance criteria for semi-Markov jump neural networks are obtained.Additionally,an activation function division approach for neural networks is adopted to further reduce the conservatism of the criteria.Finally,a simulation example is provided to verify the validity and feasibility of the proposed method.展开更多
Organic-inorganic hybrid lead-tin perovskite solar cells(Pb-Sn PSCs)have attracted much attention because of their advantages of low toxicity,variable bandgap,and feasibility for all-perovskite tandem solar cells,and ...Organic-inorganic hybrid lead-tin perovskite solar cells(Pb-Sn PSCs)have attracted much attention because of their advantages of low toxicity,variable bandgap,and feasibility for all-perovskite tandem solar cells,and the current power conversion efficiency(PCE)has exceeded 23%.However,due to the rambunctious crystallization process,easily oxidized Sn(Ⅱ)and inadequate energy level arrangement,there are many defects in perovskite films resulting in serious carrier recombination,which makes PCE still lag Pb-based PSCs.The quality of perovskite films is an important factor affecting the overall device performance.The selection and optimization of transport layers not only determines the interface energy level arrangement but also affects the carrier transport.In this paper,the research progress in improving performance of Pb-Sn PSCs in recent years is reviewed from aspects of perovskite layer and transport layers.The profound understanding of different promotion methods is summarized as well.These results have certain guiding significance for the future development and commercial application of Pb-Sn PSCs.展开更多
The probability distribution function (PDF) of a passive tracer, forced by a "mean gradient", is studied. First, we take two theoretical approaches, the Lagrangian and the conditional closure formalisms, to study ...The probability distribution function (PDF) of a passive tracer, forced by a "mean gradient", is studied. First, we take two theoretical approaches, the Lagrangian and the conditional closure formalisms, to study the PDFs of such an externally forced passive tracer. Then, we carry out numerical simulations for an idealized random flow on a sphere and for European Center for Medium-Range Weather Forecasts (ECMWF) stratospheric winds to test whether the mean-gradient model can be applied to studying stratospheric tracer mixing in midlatitude surf zones, in which a weak and poleward zonal-mean gradient is maintained by tracer leakage through polar and tropical mixing barriers, and whether the PDFs of tracer fluctuations in midlatitudes are consistent with the theoretical predictions. The numerical simulations show that when diffusive dissipation is balanced by the mean-gradient forcing, the PDF in the random flow and the Southern-Hemisphere PDFs in ECMWF winds show time-invariant exponential tails, consistent with theoretical predictions. In the Northern Hemisphere, the PDFs exhibit non-Gaussian tails. However, the PDF tails are not consistent with theoretical expectations. The long-term behavior of the PDF tails of the forced tracer is compared to that of a decaying tracer. It is found that the PDF tails of the decaying tracer are time-dependent, and evolve toward flatter than exponential.展开更多
To quantitatively investigate the water mass transport of mesoscale eddies,the mass transport induced by a simulated anticyclonic eddy in the South China Sea was evaluated by using the Regional Ocean Modelling System(...To quantitatively investigate the water mass transport of mesoscale eddies,the mass transport induced by a simulated anticyclonic eddy in the South China Sea was evaluated by using the Regional Ocean Modelling System(ROMS)and a built-in passive tracer module.The results indicate that the eddy can trap and transport 51%of the initial water in the eddy core to 689 km from its origin during its lifetime of 100 days,with a stable loss rate of 6‰per day.During propagation,there is drastic horizontal water exchange between the inside and outside of the eddy.Meanwhile,the vertical mass transport is signifi cant,and 65%of the water initially in the mixed layer of the eddy is eventually detrained into the subsurface.A tracer budget analysis of eddy shows that advection is the dominant dynamic process of transport,while the eff ect of mixing is weak,and horizontal process plays a controlling role.Horizontal and vertical advection exhibit opposite patterns and strongly off set each other.Particularly,a distinct dipole pattern is found in the local velocity fi eld of the eddy,with signifi cant convergence(downwelling)and divergence(upwelling)zones in the anterior and posterior of the eddy,respectively,which is likely related to the driving mechanism of the westward propagation of the eddy.The dipole further induces a vertical overturning cell,through which the surface water in the anterior of the eddy detrains into the subsurface by downwelling and resurface from the posterior of the eddy by upwelling and gradually spreads out of the eddy.The temporal variability in the tracer budget is signifi cant,in which horizontal advection is dominant.The propagation acceleration and temporal derivative of the deformation rate are highly correlated with tracer transport,suggesting the potential eff ect of the temporal instability of eddies on the eddy mass transport.展开更多
基金supported by the National Natural Science Foundation of China(22072034,22001050,and 21873025)the China Postdoctoral Science Foundation(2020T130147,2020M681084,and 2022M710949)+1 种基金the Postdoctoral Foundation of Heilongjiang Province(LBH-Z19059)the Natural Science Foundation of Heilongjiang Youth Fund(YQ2021B002).
文摘Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.
基金Project(51274257) supported by the National Natural Science Foundation of ChinaProject(U1232103) supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of Sciences+1 种基金Project(VR-12419) supported by the Beijing Synchrotron Radiation Facility Public User Program,ChinaProject(15ssrf00924) supported by the Shanghai Institute of Applied Physics Open Fund of Shanghai Synchrotron Radiation Facility,China
文摘The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.
基金supported by the National Natural Science Foundation of China under Grant Nos.62103005,62173001,and 62273006the Natural Science Foundation of Anhui Provincial Natural Science Foundation under Grant No.2108085QF276+3 种基金the Natural Science Foundation for Distinguished Young Scholars of Higher Education Institutions of Anhui Province under Grant No.2022AH020034the Natural Science Foundation for Excellent Young Scholars of Higher Education Institutions of Anhui Province under Grant No.2022AH030049,2023AH030030,2022AH030049the Major Technologies Research and Development Special Program of Anhui Province under Grant No.202003a05020001the Key Research and Development Projects of Anhui Province under Grant No.202104a05020015。
文摘In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of denial-of-service attacks and deception attacks,and they are described by two groups of independent Bernoulli distributions.On this foundation,via the Lyapunov stability theory and linear matrix inequality technology,the H_(∞)/passive-based performance criteria for semi-Markov jump neural networks are obtained.Additionally,an activation function division approach for neural networks is adopted to further reduce the conservatism of the criteria.Finally,a simulation example is provided to verify the validity and feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China(62175084,62005093)the Industrial Technology Research and Development Project of Jilin Province(2020C026-5)。
文摘Organic-inorganic hybrid lead-tin perovskite solar cells(Pb-Sn PSCs)have attracted much attention because of their advantages of low toxicity,variable bandgap,and feasibility for all-perovskite tandem solar cells,and the current power conversion efficiency(PCE)has exceeded 23%.However,due to the rambunctious crystallization process,easily oxidized Sn(Ⅱ)and inadequate energy level arrangement,there are many defects in perovskite films resulting in serious carrier recombination,which makes PCE still lag Pb-based PSCs.The quality of perovskite films is an important factor affecting the overall device performance.The selection and optimization of transport layers not only determines the interface energy level arrangement but also affects the carrier transport.In this paper,the research progress in improving performance of Pb-Sn PSCs in recent years is reviewed from aspects of perovskite layer and transport layers.The profound understanding of different promotion methods is summarized as well.These results have certain guiding significance for the future development and commercial application of Pb-Sn PSCs.
基金This work is supported by the National Natural Science Foundation of China (NSFC) under Grants Nos. 40575031 and 40533016by the Ministry of Education of China under Grant No. 106002.
文摘The probability distribution function (PDF) of a passive tracer, forced by a "mean gradient", is studied. First, we take two theoretical approaches, the Lagrangian and the conditional closure formalisms, to study the PDFs of such an externally forced passive tracer. Then, we carry out numerical simulations for an idealized random flow on a sphere and for European Center for Medium-Range Weather Forecasts (ECMWF) stratospheric winds to test whether the mean-gradient model can be applied to studying stratospheric tracer mixing in midlatitude surf zones, in which a weak and poleward zonal-mean gradient is maintained by tracer leakage through polar and tropical mixing barriers, and whether the PDFs of tracer fluctuations in midlatitudes are consistent with the theoretical predictions. The numerical simulations show that when diffusive dissipation is balanced by the mean-gradient forcing, the PDF in the random flow and the Southern-Hemisphere PDFs in ECMWF winds show time-invariant exponential tails, consistent with theoretical predictions. In the Northern Hemisphere, the PDFs exhibit non-Gaussian tails. However, the PDF tails are not consistent with theoretical expectations. The long-term behavior of the PDF tails of the forced tracer is compared to that of a decaying tracer. It is found that the PDF tails of the decaying tracer are time-dependent, and evolve toward flatter than exponential.
基金Supported by the National Key R&D Program of China(No.2016YFC0301203)the National Natural Science Foundation of China(No.41676009)the State Key Program of National Natural Science of China(No.41730534)。
文摘To quantitatively investigate the water mass transport of mesoscale eddies,the mass transport induced by a simulated anticyclonic eddy in the South China Sea was evaluated by using the Regional Ocean Modelling System(ROMS)and a built-in passive tracer module.The results indicate that the eddy can trap and transport 51%of the initial water in the eddy core to 689 km from its origin during its lifetime of 100 days,with a stable loss rate of 6‰per day.During propagation,there is drastic horizontal water exchange between the inside and outside of the eddy.Meanwhile,the vertical mass transport is signifi cant,and 65%of the water initially in the mixed layer of the eddy is eventually detrained into the subsurface.A tracer budget analysis of eddy shows that advection is the dominant dynamic process of transport,while the eff ect of mixing is weak,and horizontal process plays a controlling role.Horizontal and vertical advection exhibit opposite patterns and strongly off set each other.Particularly,a distinct dipole pattern is found in the local velocity fi eld of the eddy,with signifi cant convergence(downwelling)and divergence(upwelling)zones in the anterior and posterior of the eddy,respectively,which is likely related to the driving mechanism of the westward propagation of the eddy.The dipole further induces a vertical overturning cell,through which the surface water in the anterior of the eddy detrains into the subsurface by downwelling and resurface from the posterior of the eddy by upwelling and gradually spreads out of the eddy.The temporal variability in the tracer budget is signifi cant,in which horizontal advection is dominant.The propagation acceleration and temporal derivative of the deformation rate are highly correlated with tracer transport,suggesting the potential eff ect of the temporal instability of eddies on the eddy mass transport.