Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric a...The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd^3+ and Sm^3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm^3+ or Nd^3+. The chemical compositions of the extracted complex were determined as Nd.(HA2)2-HL2 and Sm.(HA2)2-HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.展开更多
Synergistic extraction of cerium(IV) from sulfuric acid medium using mixture of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester(HEH/EHP, HL) and Di-(2-ethyl hexyl) phosphoric acid(HDEHP, HA) as extractant...Synergistic extraction of cerium(IV) from sulfuric acid medium using mixture of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester(HEH/EHP, HL) and Di-(2-ethyl hexyl) phosphoric acid(HDEHP, HA) as extractant was investigated.The results indicated that the maximum synergistic enhancement coefficients were obtained at the mole fraction of HEH/EHP=0.6, and cerium(IV) was extracted into organic phase in the form of Ce(SO4)0.5HL2A2.A cation exchange mechanism was proposed for the synergistic extraction of Ce(IV).The equilibrium constants and thermodynamic functions such as △G, △H, and △S were determined in the extraction of Ce(IV) from sulfuric medium using mixture of HEH/EHP and HDEHP.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional ...The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.展开更多
A comparison between the effects of ordinary walnut shell and phosphoric acid modified walnut shell on adsorption of Cr(Ⅵ) was carried out. The experimental results showed that owing to larger surface void of modif...A comparison between the effects of ordinary walnut shell and phosphoric acid modified walnut shell on adsorption of Cr(Ⅵ) was carried out. The experimental results showed that owing to larger surface void of modified walnut shell its adsorption of Cr(Ⅵ) was better. When the temperature was 35 ℃, adsorbent particle size was 1.0-1.6 mm, shaker shock rate was 200 r/min, and dosage of walnut shell was 0.80 g, the Cr(Ⅵ) removal rate reached 99.4%. The fitting of adsorption isotherm and kinetics model showed that, Langmuir isotherm model could reflect the adsorption process of modified walnut shell; and both the adsorption processes of ordinary and modified walnut shells accorded with the pseudo-second-order kinetic equations.展开更多
This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn bas...This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.展开更多
Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requireme...Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.展开更多
Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation ex...Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.展开更多
The effect of cerium salt as an inhibitor in anodising of the2024-T3aluminium alloy was studied.Scanning electronmicroscopy equipped with energy dispersive X-ray spectroscopy was used to study the surface composition ...The effect of cerium salt as an inhibitor in anodising of the2024-T3aluminium alloy was studied.Scanning electronmicroscopy equipped with energy dispersive X-ray spectroscopy was used to study the surface composition of the alloy before andafter surface preparation.A mixed electrolyte of10%sulphuric acid,5%boric acid and2%phosphoric acid containing0.1mol/Lcerium sulphate salt was used as the anodising electrolyte.Sealing treatment was also done in boiling water and molten stearic acid.Electrochemical impedance spectroscopy and salt spray techniques were performed in order to investigate the corrosion behaviourand durability of the oxide films,respectively.It was concluded that the presence of cerium ions in anodising electrolyte resulted inthe increase in homogeneity,the rate of oxide film growth and also the thickness of the oxide layer,owing to the high oxidisingpower of cerium ion.展开更多
Hydrogen molybdenum bronze (HxMoO3) can be electrodeposited on platinum and oxidized in two steps to the hydrogen molybdenum bronze with less amount of hydrogen HyMoO3 (y<x) and MoO3 when platinum electrode is cycl...Hydrogen molybdenum bronze (HxMoO3) can be electrodeposited on platinum and oxidized in two steps to the hydrogen molybdenum bronze with less amount of hydrogen HyMoO3 (y<x) and MoO3 when platinum electrode is cycled from -0.2 to 1.3V (vs. SCE) in 0.05 mol/L Na2MoO4 + 0.5 mol/L H2SO4 solution. During the formation of HxMoO3, the electrochemical reduction of molybdate existing in the form of polymolydate is reversible and is about a five-electron transfer reaction.展开更多
The densities and surface tensions of [Bmim][TFO]/H2SO4, [Hmim][TFO]/H2SO4 and [Omim][TFO]/H2SO4 binary mixtures were measured by pycnometer and Wilhelmy plate method respectively. The results show that densities and ...The densities and surface tensions of [Bmim][TFO]/H2SO4, [Hmim][TFO]/H2SO4 and [Omim][TFO]/H2SO4 binary mixtures were measured by pycnometer and Wilhelmy plate method respectively. The results show that densities and surface tensions of the mixtures decreased monotonously with increasing temperatures and increasing ionic liquid (IL) molar fraction. IL with longer alkyl side-chain length brings a lower density and a smaller surface tension to the ILs/H2SO4 binary mixtures. The densities and surface tensions of the mixtures are fitted well by Jouyban-Acree (JAM) model and LWW model respectively. Redlich-Kister (R-K)equation and modified Redlich-Kister (R-K) equation describe the excess molar volumes and excess surface tensions of the mixtures well respectively. Adding a small amount of ILs (XIL 〈 0.1 ) into sulfuric acid brings an obvious decrease to the density and the surface tension. The results imply that the densities and surface tensions of IL5/H2SO4 binary mixtures can be modulated by changing the IL dosage or tailoring the IL structure.展开更多
A highly efficient green protocol for the preparation of bis-indolylmethanes,bis-2-methylindolylmethanes,bis-1-methylindolylmethanes and 3,3 -diindolyloxindole derivatives from the reaction of indoles with various ald...A highly efficient green protocol for the preparation of bis-indolylmethanes,bis-2-methylindolylmethanes,bis-1-methylindolylmethanes and 3,3 -diindolyloxindole derivatives from the reaction of indoles with various aldehydes and ketones in the presence of cellulose sulfuric acid under solvent-free conditions is reported.The significant features of this procedure are high yields of the products,mild reaction,solvent-free condition and non-toxicity of the catalyst.展开更多
There are numerous impurities in wet-process phosphoric acid,among which manganese is one of detrimental metallic impurities,and it causes striking negative effects on the industrial phosphoric acid production and dow...There are numerous impurities in wet-process phosphoric acid,among which manganese is one of detrimental metallic impurities,and it causes striking negative effects on the industrial phosphoric acid production and downstream commodity.This article investigated the adsorption behavior of manganese from phosphoric acid employing Sinco-430 cationic ion-exchange resin.Resorting FT-IR and XPS characterizations,the adsorption mechanism was proved to be that manganese was combined with sulfonic acid group.Several crucial parameters such as temperature,phosphoric acid content and resin dose were studied to optimize adsorption efficiency.Through optimization,removal percentage and sorption capacity of manganese reached 53.12 wt%,28.34 mg·g^-1,respectively.Pseudo-2nd-order kinetic model simulated kinetics data best and the activation energy was evaluated as 6.34 kJ·mol^-1 for the sorption reaction of manganese.In addition,the global adsorption rate was first controlled by film diffusion process and second determined by pore diffusion process.It was found that the resin could adsorb up to 50.24 mg·g^-1 for manganese.Equilibrium studies showed that Toth adsorption isotherm model fitted best,followed by Temkin and Langmuir adsorption isotherm models.Thermodynamic analysis showed that manganese adsorption was an endothermic process with enhanced randomness and spontaneity.展开更多
The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM...The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron micros- copy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfi.Lric acid, and the seed dosage of mtile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100℃. When the hydrolysis rate of titanitma expressed by TiOa was more than or equal to 0.04 g/(L.min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L.min). With the hy- drolysis rate between 0.02 and 0.03 g/(L.min), the hydrolysate contained almost equal magnitude ofrutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.展开更多
Oxathioacetalyzation of carbonyl compounds with 2-mercaptoethanol and deprotection of the obtained 1,3-oxathiolanes is easily performed in the presence of silica sulfuric acid (SSA). All reactions were performed und...Oxathioacetalyzation of carbonyl compounds with 2-mercaptoethanol and deprotection of the obtained 1,3-oxathiolanes is easily performed in the presence of silica sulfuric acid (SSA). All reactions were performed under mild and completely heterogeneous reaction conditions in good to high yields.展开更多
The extraction of RE(Ⅲ) (RE=La, Nd, Sm, Gd) in sulfuric acid medium using the mixture of HDEHP(H2B2) and HEH/EHP(H2L2) was investigated. The synergistic enhancement coefficient(R) was calculated for La (1...The extraction of RE(Ⅲ) (RE=La, Nd, Sm, Gd) in sulfuric acid medium using the mixture of HDEHP(H2B2) and HEH/EHP(H2L2) was investigated. The synergistic enhancement coefficient(R) was calculated for La (1.96), Nd(3.52), Sm(5.96), and Gd(5.71), respectively, at pH=2.0, and it was seen that the R increased with the increase of aqueous quilibrium pH. The configuration of the extracted complexes was considered to be RE(SOa)xH2x(HB2)3 with HDEHP, RE(SOa)xH2x(HL2)3 with HEH/EHP, and RE(HB2)2(HL2) with their mixture as the extractant with the slope method. The equilibrium constants and stability constants were calculated. A cation exchange mechanism was proposed as well.展开更多
An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuri...An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuric acid curing and low concentration sulfuric acid leaching.The process parameters of sulfuric acid curing TBBFS were systematically studied.Under the optimal conditions,the recovery of titanium,aluminum,and magnesium reached 85.96%,81.17%,and 93.82%,respectively.The rapid leaching model was used to limit the dissolution and polymerization of silicon,and the dissolution of silicon was only 3.18%.The mechanism of sulfuric acid curing-leaching was investigated.During the curing process,the reaction occurred rapidly and released heat massively.Under the attack of hydrogen ions,the structure of TBBFS was destroyed,silicate was depolymerized to form filterable silica,and titanium,magnesium,aluminum,and calcium ions were replaced to form sulfates and enriched on the surface of silica particles.Titanium,aluminum,and magnesium were recovered in the leaching solution,and calcium sulfate and silica were enriched in the residue after leaching.This method could effectively avoid the formation of silica sol during the leaching process and accelerate the solid-liquid separation.展开更多
The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders wer...The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders were investigated. The results show that the increase of mass ratio of phosphoric acid to aluminum hydroxide, the decrease of mass concentration of phosphoric acid and prolongation of mixing time are favorable to the improvement of thermal stability of aluminum hydroxide; when the mass ratio of phosphoric acid to aluminum hydroxide is 5:100, the mass concentration of phosphoric acid is 200 g/L and the mixing time is 10 min, the initial temperature of loss of crystal water in aluminum hydroxide rises from about 192.10 to 208.66 ℃, but the dry modification results in the appearance of agglomeration and macro-aggregate in the modified powders, and the oil absorption of modified powders becomes higher than that of original aluminum hydroxide.展开更多
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金the National Natural Science Foundation of China (50674016)the National High Technology Research and Develop-ment Program of China (863 Program) ( 2006AA06Z123)
文摘The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd^3+ and Sm^3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm^3+ or Nd^3+. The chemical compositions of the extracted complex were determined as Nd.(HA2)2-HL2 and Sm.(HA2)2-HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.
基金support by the High Technology Research and Development Programme (2006AA06Z123) National Key Technology Research and Development Programme (2006BAC02A06) of China
文摘Synergistic extraction of cerium(IV) from sulfuric acid medium using mixture of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester(HEH/EHP, HL) and Di-(2-ethyl hexyl) phosphoric acid(HDEHP, HA) as extractant was investigated.The results indicated that the maximum synergistic enhancement coefficients were obtained at the mole fraction of HEH/EHP=0.6, and cerium(IV) was extracted into organic phase in the form of Ce(SO4)0.5HL2A2.A cation exchange mechanism was proposed for the synergistic extraction of Ce(IV).The equilibrium constants and thermodynamic functions such as △G, △H, and △S were determined in the extraction of Ce(IV) from sulfuric medium using mixture of HEH/EHP and HDEHP.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
文摘The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.
基金Supported by National Natural Science Foundation of China(51168013)National Key Technology Support Program(2014BAC04B03)~~
文摘A comparison between the effects of ordinary walnut shell and phosphoric acid modified walnut shell on adsorption of Cr(Ⅵ) was carried out. The experimental results showed that owing to larger surface void of modified walnut shell its adsorption of Cr(Ⅵ) was better. When the temperature was 35 ℃, adsorbent particle size was 1.0-1.6 mm, shaker shock rate was 200 r/min, and dosage of walnut shell was 0.80 g, the Cr(Ⅵ) removal rate reached 99.4%. The fitting of adsorption isotherm and kinetics model showed that, Langmuir isotherm model could reflect the adsorption process of modified walnut shell; and both the adsorption processes of ordinary and modified walnut shells accorded with the pseudo-second-order kinetic equations.
基金supported by the project of Jiangsu Independent Innovation,China(CX(15)1003-3)the Key Technologies R&D Program of China during the 13th Five-Year Plan period(2016YFC0502005)the Special Project of Grass of Tibet Autonomous Region for the 13th Five-Year Plan,China
文摘This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.
文摘Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.
基金Supported by the National Basic Research Program of China(2016YFD0200404)
文摘Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.
文摘The effect of cerium salt as an inhibitor in anodising of the2024-T3aluminium alloy was studied.Scanning electronmicroscopy equipped with energy dispersive X-ray spectroscopy was used to study the surface composition of the alloy before andafter surface preparation.A mixed electrolyte of10%sulphuric acid,5%boric acid and2%phosphoric acid containing0.1mol/Lcerium sulphate salt was used as the anodising electrolyte.Sealing treatment was also done in boiling water and molten stearic acid.Electrochemical impedance spectroscopy and salt spray techniques were performed in order to investigate the corrosion behaviourand durability of the oxide films,respectively.It was concluded that the presence of cerium ions in anodising electrolyte resulted inthe increase in homogeneity,the rate of oxide film growth and also the thickness of the oxide layer,owing to the high oxidisingpower of cerium ion.
文摘Hydrogen molybdenum bronze (HxMoO3) can be electrodeposited on platinum and oxidized in two steps to the hydrogen molybdenum bronze with less amount of hydrogen HyMoO3 (y<x) and MoO3 when platinum electrode is cycled from -0.2 to 1.3V (vs. SCE) in 0.05 mol/L Na2MoO4 + 0.5 mol/L H2SO4 solution. During the formation of HxMoO3, the electrochemical reduction of molybdate existing in the form of polymolydate is reversible and is about a five-electron transfer reaction.
基金Supported by the National Natural Science Foundation of China(21576168,21276163)
文摘The densities and surface tensions of [Bmim][TFO]/H2SO4, [Hmim][TFO]/H2SO4 and [Omim][TFO]/H2SO4 binary mixtures were measured by pycnometer and Wilhelmy plate method respectively. The results show that densities and surface tensions of the mixtures decreased monotonously with increasing temperatures and increasing ionic liquid (IL) molar fraction. IL with longer alkyl side-chain length brings a lower density and a smaller surface tension to the ILs/H2SO4 binary mixtures. The densities and surface tensions of the mixtures are fitted well by Jouyban-Acree (JAM) model and LWW model respectively. Redlich-Kister (R-K)equation and modified Redlich-Kister (R-K) equation describe the excess molar volumes and excess surface tensions of the mixtures well respectively. Adding a small amount of ILs (XIL 〈 0.1 ) into sulfuric acid brings an obvious decrease to the density and the surface tension. The results imply that the densities and surface tensions of IL5/H2SO4 binary mixtures can be modulated by changing the IL dosage or tailoring the IL structure.
基金support of this work from the Research Council of Mazandaran University
文摘A highly efficient green protocol for the preparation of bis-indolylmethanes,bis-2-methylindolylmethanes,bis-1-methylindolylmethanes and 3,3 -diindolyloxindole derivatives from the reaction of indoles with various aldehydes and ketones in the presence of cellulose sulfuric acid under solvent-free conditions is reported.The significant features of this procedure are high yields of the products,mild reaction,solvent-free condition and non-toxicity of the catalyst.
文摘There are numerous impurities in wet-process phosphoric acid,among which manganese is one of detrimental metallic impurities,and it causes striking negative effects on the industrial phosphoric acid production and downstream commodity.This article investigated the adsorption behavior of manganese from phosphoric acid employing Sinco-430 cationic ion-exchange resin.Resorting FT-IR and XPS characterizations,the adsorption mechanism was proved to be that manganese was combined with sulfonic acid group.Several crucial parameters such as temperature,phosphoric acid content and resin dose were studied to optimize adsorption efficiency.Through optimization,removal percentage and sorption capacity of manganese reached 53.12 wt%,28.34 mg·g^-1,respectively.Pseudo-2nd-order kinetic model simulated kinetics data best and the activation energy was evaluated as 6.34 kJ·mol^-1 for the sorption reaction of manganese.In addition,the global adsorption rate was first controlled by film diffusion process and second determined by pore diffusion process.It was found that the resin could adsorb up to 50.24 mg·g^-1 for manganese.Equilibrium studies showed that Toth adsorption isotherm model fitted best,followed by Temkin and Langmuir adsorption isotherm models.Thermodynamic analysis showed that manganese adsorption was an endothermic process with enhanced randomness and spontaneity.
基金financially supported by a grant from the Ph.D. Programs Foundation of the Ministry of Education of China (No.20070610125)
文摘The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfmic acid solu- tion was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron micros- copy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfi.Lric acid, and the seed dosage of mtile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100℃. When the hydrolysis rate of titanitma expressed by TiOa was more than or equal to 0.04 g/(L.min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L.min). With the hy- drolysis rate between 0.02 and 0.03 g/(L.min), the hydrolysate contained almost equal magnitude ofrutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.
文摘Oxathioacetalyzation of carbonyl compounds with 2-mercaptoethanol and deprotection of the obtained 1,3-oxathiolanes is easily performed in the presence of silica sulfuric acid (SSA). All reactions were performed under mild and completely heterogeneous reaction conditions in good to high yields.
文摘The extraction of RE(Ⅲ) (RE=La, Nd, Sm, Gd) in sulfuric acid medium using the mixture of HDEHP(H2B2) and HEH/EHP(H2L2) was investigated. The synergistic enhancement coefficient(R) was calculated for La (1.96), Nd(3.52), Sm(5.96), and Gd(5.71), respectively, at pH=2.0, and it was seen that the R increased with the increase of aqueous quilibrium pH. The configuration of the extracted complexes was considered to be RE(SOa)xH2x(HB2)3 with HDEHP, RE(SOa)xH2x(HL2)3 with HEH/EHP, and RE(HB2)2(HL2) with their mixture as the extractant with the slope method. The equilibrium constants and stability constants were calculated. A cation exchange mechanism was proposed as well.
基金financially supported by the National Key Projects for Fundamental Research and Development of China(No.2016YFB0600904)the Sichuan University-Panzhihua city joint strategic cooperation special fund project,China(No.2018CDPZH-7)。
文摘An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuric acid curing and low concentration sulfuric acid leaching.The process parameters of sulfuric acid curing TBBFS were systematically studied.Under the optimal conditions,the recovery of titanium,aluminum,and magnesium reached 85.96%,81.17%,and 93.82%,respectively.The rapid leaching model was used to limit the dissolution and polymerization of silicon,and the dissolution of silicon was only 3.18%.The mechanism of sulfuric acid curing-leaching was investigated.During the curing process,the reaction occurred rapidly and released heat massively.Under the attack of hydrogen ions,the structure of TBBFS was destroyed,silicate was depolymerized to form filterable silica,and titanium,magnesium,aluminum,and calcium ions were replaced to form sulfates and enriched on the surface of silica particles.Titanium,aluminum,and magnesium were recovered in the leaching solution,and calcium sulfate and silica were enriched in the residue after leaching.This method could effectively avoid the formation of silica sol during the leaching process and accelerate the solid-liquid separation.
基金Project(06SK2011) supported by the Science and Technology Program of Hunan Province, China
文摘The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders were investigated. The results show that the increase of mass ratio of phosphoric acid to aluminum hydroxide, the decrease of mass concentration of phosphoric acid and prolongation of mixing time are favorable to the improvement of thermal stability of aluminum hydroxide; when the mass ratio of phosphoric acid to aluminum hydroxide is 5:100, the mass concentration of phosphoric acid is 200 g/L and the mixing time is 10 min, the initial temperature of loss of crystal water in aluminum hydroxide rises from about 192.10 to 208.66 ℃, but the dry modification results in the appearance of agglomeration and macro-aggregate in the modified powders, and the oil absorption of modified powders becomes higher than that of original aluminum hydroxide.