Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), l...A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), laser Raman spectrum (LRS), and temperature programmed reduction (TPR) techniques. The XRD and LRS results confirmed the high dispersion of active components or formation of solid solution between manganese and cerium oxides in the bulk and on the surface of mixed oxide catalysts. The reducibility was remarkably promoted by the stronger synergistic interaction between the two oxides from H2-TPR measurements. As expected, all the experimental mixed oxide catalysts showed excellent activity for methane combustion at low temperature. Especially, for the catalyst with Mn-Ce ratio 3:7, methane conversion reached 92% at a temperature as low as 470 ℃.展开更多
The experimental investigation of homogeneous charge compression ignition (HCCI) process is carried out on a 4-cylinder diesel engine. One of the cylinders is modified for HCCI combustion with mixed additives. The inf...The experimental investigation of homogeneous charge compression ignition (HCCI) process is carried out on a 4-cylinder diesel engine. One of the cylinders is modified for HCCI combustion with mixed additives. The influence of mixed additives on the HCCI combustion process is investigated. The experimental results indicate that the mixed additives are better than the single additives for HCCI fuel, causing ignition and heat release to be advanced and the peak of heat release rate to increase under the condition of different engine speeds and steady HCCI combustion. Moreover, with the increase in engine speed, the influence of mixed additives on HCCI combustion is more obvious. In addition, the mixed additives are beneficial to improve HCCI engine misfire at a high engine speed and make the engine operate stable.展开更多
In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butan...In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butane-air combustion system. The evolvement of the discharge section and the effect of MHD-assisted mixing on combustion are investigated by changing the magnetic flux density and airflow velocity. The results show that the discharge area not only bends but also rotates around the centered wire electrode, which are mainly caused by the Lorentz force. Moreover, the highest curvature occurs near the centered wire electrode.The discharge localizes near the surface of the wire electrode and annular electrode when there is no ponderomotive force. However, if the ponderomotive force is applied, the discharge happens between these two electrodes and it gradually shrinks with time. The discharge area cannot localize near the annular electrode, which is due to the increase of energy loss in the airflow.When the airflow velocity exceeds a certain value, the discharge section becomes unstable because the injected energy cannot maintain the discharge. The rotation motion of the discharge section could enlarge the contact surface between butane and air, and is therefore beneficial for mixing and combustion. Magnetic flux density and airflow velocity are critical parameters for MHD-assisted mixing.展开更多
Based on the theory of forest burning link, the combustibility of the 6-year-old Chinese fir (Cunninghamia lanceolata) and macclure michelia (Michelia macclurei) mixed forest was determined in Youxi County, Fujian Pro...Based on the theory of forest burning link, the combustibility of the 6-year-old Chinese fir (Cunninghamia lanceolata) and macclure michelia (Michelia macclurei) mixed forest was determined in Youxi County, Fujian Province from 1988 to 1989. The results show that the daily mean moisture in the forest, moisture content of litter and the water reserves of the stand in mixed forest are 3%, 7.6% and 46.8% higher than that in pure stand respectively, the inflammables quantity and energy ratios of the stand biomass and total potential energy in mixed stand are 8.5% and 3.69% lower than that in pure stand respectively. Mixed forest can decrease the combustibility of stand.展开更多
The air-turbo-rocket(ATR)engine is a promising propulsion plant for achieving numerous surface and air launched missile missions.The application of lobed mixer in the ATR combustor can promote the mixing of the fuelri...The air-turbo-rocket(ATR)engine is a promising propulsion plant for achieving numerous surface and air launched missile missions.The application of lobed mixer in the ATR combustor can promote the mixing of the fuelrich gas and the air,thus improving the engine performance significantly.The numerical simulation method was conducted to explore the effects of lobe peak-to-trough width ratio on mixing and combustion performance in ATR combustors.Results show that:For a given peak lobe width b1,the combustion efficiency and total pressure loss decrease with the increase of trough lobe width b2;For a given b2,the combustion efficiency and total pressure loss decrease with the increase of b1;The fan-type lobed mixer with smaller b2has a better effect on promoting the combustion efficiency in the region near the ATR combustor center line than that with a pair of parallel side walls.The total pressure recovery coefficient reaches more than 0.99 at the exit of combustor in nonreactive combustion while the total pressure loss reaches more than 4%in the reacting combustion.Compared with the mixing process,more than80%of the total pressure loss is caused during combustion.展开更多
It has been found that the static pressure distribution along the axial direction of liquid kerosene is lower than that of the gaseous kerosene under the same flow condition and overall equivalent ratio from previous ...It has been found that the static pressure distribution along the axial direction of liquid kerosene is lower than that of the gaseous kerosene under the same flow condition and overall equivalent ratio from previous studies.To further investigate this phenomenon,a compressible two-phase parallel simulation method is utilized to analyze the mixing and combustion characteristics of gaseous and liquid kerosene jets in a cavity-based supersonic combustor.The numerical results are consistent with the experiments and demonstrate that gaseous injection leads to a cavity shear layer that dives deeper into the cavity,forming two recirculation zones in the front and rear of the cavity.In contrast,the cavity shear layer is closer to the mainstream during liquid injection,and only a large recirculation zone is formed in the rear of the cavity.As a result of the cavity shear layer and the recirculating flow,the fuel vapor of gaseous injection accumulates in the front of the cavity,while for the liquid injection,the fuel vapor disperses in the cavity,cavity shear layer,and the region above,and the rear of the cavity has a higher fuel vapor concentration than the front.This unique fuel distribution causes the combustion area to be concentrated in the cavity during the gaseous injection but dispersed inside and downstream of the cavity during the liquid injection.As a result,forming a thermal throat under the same conditions is more challenging during liquid injection,and the generated static pressure distribution is lower than that during the gaseous injection.展开更多
A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxi...A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxides.The catalyst with a Co/Cr molar ratio of 1:2(1 Co2 Cr)and a spinel structure has the best activity(with a reaction rate of 1.38μmol g^–1 s^–1 at 250℃),which is attributed to the synergistic roles of its high surface acidity and good low-temperature reducibility,as evidenced by the temperature-programmed desorption of ammonia,reduction of hydrogen,and surface reaction of propane.Kinetic study shows that the reaction orders of propane and oxygen on the 1 Co2 Cr catalyst(0.58±0.03 and 0.34±0.05,respectively)are lower than those on the 2 Co1 Cr catalyst(0.77±0.02 and 0.98±0.16,respectively)and 1 Co5 Cr(0.66±0.05 and 1.30±0.11,respectively),indicating that the coverages of propane and oxygen on 1 Co2 Cr are higher than those on the other catalysts due to its higher surface acidity and higher reducibility.In addition,in-situ diffuse reflectance infrared spectroscopic investigation reveals that the main surface species on 1 Co2 Cr during the reaction are polydentate carbonate species,which accumulate on the surface at low temperatures(<250℃)but decompose at relatively high temperatures.展开更多
The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in...The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.展开更多
氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究...氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。展开更多
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.
基金supported by the New Century Excellent Talent Project of China (NCET-05-0783)
文摘A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), laser Raman spectrum (LRS), and temperature programmed reduction (TPR) techniques. The XRD and LRS results confirmed the high dispersion of active components or formation of solid solution between manganese and cerium oxides in the bulk and on the surface of mixed oxide catalysts. The reducibility was remarkably promoted by the stronger synergistic interaction between the two oxides from H2-TPR measurements. As expected, all the experimental mixed oxide catalysts showed excellent activity for methane combustion at low temperature. Especially, for the catalyst with Mn-Ce ratio 3:7, methane conversion reached 92% at a temperature as low as 470 ℃.
基金National Natural Science Foundation of China (50522202)National Key Basic Research Programof China (2001CB209201)
文摘The experimental investigation of homogeneous charge compression ignition (HCCI) process is carried out on a 4-cylinder diesel engine. One of the cylinders is modified for HCCI combustion with mixed additives. The influence of mixed additives on the HCCI combustion process is investigated. The experimental results indicate that the mixed additives are better than the single additives for HCCI fuel, causing ignition and heat release to be advanced and the peak of heat release rate to increase under the condition of different engine speeds and steady HCCI combustion. Moreover, with the increase in engine speed, the influence of mixed additives on HCCI combustion is more obvious. In addition, the mixed additives are beneficial to improve HCCI engine misfire at a high engine speed and make the engine operate stable.
基金supported by National Natural Science Foundation of China(No.11372352)the Mechanism Research on Near Electrode Thermal-Electromagnetic-Flow of High Temperature Supersonic MHD Generation(No.51306207)Natural Science Foundation of Shaanxi Province of China(No.2015JM5184)
文摘In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butane-air combustion system. The evolvement of the discharge section and the effect of MHD-assisted mixing on combustion are investigated by changing the magnetic flux density and airflow velocity. The results show that the discharge area not only bends but also rotates around the centered wire electrode, which are mainly caused by the Lorentz force. Moreover, the highest curvature occurs near the centered wire electrode.The discharge localizes near the surface of the wire electrode and annular electrode when there is no ponderomotive force. However, if the ponderomotive force is applied, the discharge happens between these two electrodes and it gradually shrinks with time. The discharge area cannot localize near the annular electrode, which is due to the increase of energy loss in the airflow.When the airflow velocity exceeds a certain value, the discharge section becomes unstable because the injected energy cannot maintain the discharge. The rotation motion of the discharge section could enlarge the contact surface between butane and air, and is therefore beneficial for mixing and combustion. Magnetic flux density and airflow velocity are critical parameters for MHD-assisted mixing.
文摘Based on the theory of forest burning link, the combustibility of the 6-year-old Chinese fir (Cunninghamia lanceolata) and macclure michelia (Michelia macclurei) mixed forest was determined in Youxi County, Fujian Province from 1988 to 1989. The results show that the daily mean moisture in the forest, moisture content of litter and the water reserves of the stand in mixed forest are 3%, 7.6% and 46.8% higher than that in pure stand respectively, the inflammables quantity and energy ratios of the stand biomass and total potential energy in mixed stand are 8.5% and 3.69% lower than that in pure stand respectively. Mixed forest can decrease the combustibility of stand.
基金supported by the National Science and Technology Major Project(No.J2019-Ⅲ-0001-0044)。
文摘The air-turbo-rocket(ATR)engine is a promising propulsion plant for achieving numerous surface and air launched missile missions.The application of lobed mixer in the ATR combustor can promote the mixing of the fuelrich gas and the air,thus improving the engine performance significantly.The numerical simulation method was conducted to explore the effects of lobe peak-to-trough width ratio on mixing and combustion performance in ATR combustors.Results show that:For a given peak lobe width b1,the combustion efficiency and total pressure loss decrease with the increase of trough lobe width b2;For a given b2,the combustion efficiency and total pressure loss decrease with the increase of b1;The fan-type lobed mixer with smaller b2has a better effect on promoting the combustion efficiency in the region near the ATR combustor center line than that with a pair of parallel side walls.The total pressure recovery coefficient reaches more than 0.99 at the exit of combustor in nonreactive combustion while the total pressure loss reaches more than 4%in the reacting combustion.Compared with the mixing process,more than80%of the total pressure loss is caused during combustion.
基金supported by the National Natural Science Foundation of China (Nos.92252206,11925207,T2221002 and 12102472)。
文摘It has been found that the static pressure distribution along the axial direction of liquid kerosene is lower than that of the gaseous kerosene under the same flow condition and overall equivalent ratio from previous studies.To further investigate this phenomenon,a compressible two-phase parallel simulation method is utilized to analyze the mixing and combustion characteristics of gaseous and liquid kerosene jets in a cavity-based supersonic combustor.The numerical results are consistent with the experiments and demonstrate that gaseous injection leads to a cavity shear layer that dives deeper into the cavity,forming two recirculation zones in the front and rear of the cavity.In contrast,the cavity shear layer is closer to the mainstream during liquid injection,and only a large recirculation zone is formed in the rear of the cavity.As a result of the cavity shear layer and the recirculating flow,the fuel vapor of gaseous injection accumulates in the front of the cavity,while for the liquid injection,the fuel vapor disperses in the cavity,cavity shear layer,and the region above,and the rear of the cavity has a higher fuel vapor concentration than the front.This unique fuel distribution causes the combustion area to be concentrated in the cavity during the gaseous injection but dispersed inside and downstream of the cavity during the liquid injection.As a result,forming a thermal throat under the same conditions is more challenging during liquid injection,and the generated static pressure distribution is lower than that during the gaseous injection.
基金financially supported by the National Natural Science Foundation of China(21773212,21872124)~~
文摘A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxides.The catalyst with a Co/Cr molar ratio of 1:2(1 Co2 Cr)and a spinel structure has the best activity(with a reaction rate of 1.38μmol g^–1 s^–1 at 250℃),which is attributed to the synergistic roles of its high surface acidity and good low-temperature reducibility,as evidenced by the temperature-programmed desorption of ammonia,reduction of hydrogen,and surface reaction of propane.Kinetic study shows that the reaction orders of propane and oxygen on the 1 Co2 Cr catalyst(0.58±0.03 and 0.34±0.05,respectively)are lower than those on the 2 Co1 Cr catalyst(0.77±0.02 and 0.98±0.16,respectively)and 1 Co5 Cr(0.66±0.05 and 1.30±0.11,respectively),indicating that the coverages of propane and oxygen on 1 Co2 Cr are higher than those on the other catalysts due to its higher surface acidity and higher reducibility.In addition,in-situ diffuse reflectance infrared spectroscopic investigation reveals that the main surface species on 1 Co2 Cr during the reaction are polydentate carbonate species,which accumulate on the surface at low temperatures(<250℃)but decompose at relatively high temperatures.
基金supported by National Natural Science Foundation of China(Grant 11372139)
文摘The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.
文摘氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。