Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora...Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.展开更多
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al...The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model.展开更多
Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural...Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.展开更多
Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-le...Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-level features is carefully built and becomes a basis for a new Chinese NER method,which is proposed in this paper.This method converts the raw text to a character vector sequence,extracts global text features with a bidirectional long short-term memory and extracts local text features with a soft attention model.A linear chain conditional random field is also used to label all the characters with the help of the global and local text features.Experiments based on the Microsoft Research Asia(MSRA)dataset are designed and implemented.Results show that the proposed method has good performance compared to other methods,which proves that the global and local text features extracted have a positive influence on Chinese NER.For more variety in the test domains,a resume dataset from Sina Finance is also used to prove the effectiveness of the proposed method.展开更多
In this paper,we present an efficient algorithm that generates lip-synchronized facial animation from a given vocal audio clip.By combining spectral-dimensional bidirectional long short-term memory and temporal attent...In this paper,we present an efficient algorithm that generates lip-synchronized facial animation from a given vocal audio clip.By combining spectral-dimensional bidirectional long short-term memory and temporal attention mechanism,we design a light-weight speech encoder that leams useful and robust vocal features from the input audio without resorting to pre-trained speech recognition modules or large training data.To learn subject-independent facial motion,we use deformation gradients as the internal representation,which allows nuanced local motions to be better synthesized than using vertex offsets.Compared with state-of-the-art automatic-speech-recognition-based methods,our model is much smaller but achieves similar robustness and quality most of the time,and noticeably better results in certain challenging cases.展开更多
基金supported by the Key Research&Development Plan Project of Shandong Province,China(No.2017GGX10127).
文摘Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.
基金supported by the Shaanxi Province Natural Science Basic Research Plan Project(2023-JC-YB-244).
文摘The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model.
基金The National Natural Science Foundation of China(No.61502095).
文摘Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.
基金Supported by 242 National Information Security Projects(2017A149)。
文摘Unlike named entity recognition(NER)for English,the absence of word boundaries reduces the final accuracy for Chinese NER.To avoid accumulated error introduced by word segmentation,a deep model extracting character-level features is carefully built and becomes a basis for a new Chinese NER method,which is proposed in this paper.This method converts the raw text to a character vector sequence,extracts global text features with a bidirectional long short-term memory and extracts local text features with a soft attention model.A linear chain conditional random field is also used to label all the characters with the help of the global and local text features.Experiments based on the Microsoft Research Asia(MSRA)dataset are designed and implemented.Results show that the proposed method has good performance compared to other methods,which proves that the global and local text features extracted have a positive influence on Chinese NER.For more variety in the test domains,a resume dataset from Sina Finance is also used to prove the effectiveness of the proposed method.
文摘In this paper,we present an efficient algorithm that generates lip-synchronized facial animation from a given vocal audio clip.By combining spectral-dimensional bidirectional long short-term memory and temporal attention mechanism,we design a light-weight speech encoder that leams useful and robust vocal features from the input audio without resorting to pre-trained speech recognition modules or large training data.To learn subject-independent facial motion,we use deformation gradients as the internal representation,which allows nuanced local motions to be better synthesized than using vertex offsets.Compared with state-of-the-art automatic-speech-recognition-based methods,our model is much smaller but achieves similar robustness and quality most of the time,and noticeably better results in certain challenging cases.