A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of...A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of AP+ concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experi- ments were carried out to evaluate the characteristics of the A1 form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on AP+ concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins.展开更多
Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance.In the process of fluidization,electrostatic interaction between particles will obviously accelerate particle agg...Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance.In the process of fluidization,electrostatic interaction between particles will obviously accelerate particle agglomerate formation,which consequently reduces the fluidization performance.Pulsed gas flow injection is an efficient method to enhance particle mixing,thereby weakening the occurrence of particle agglomerate.In this study,the two-dimensional hybrid pulsed fluidized bed is established.The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects.Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition.Results show that in the presence of static electricity,the bubble generation position is lower,which is conducive to the particle flow.Pulsed gas flow can increase the particle velocity and improve the diffusion ability.The bubble generation time is different at different frequencies,and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics.Different gas flow ratios have significant impacts on the particle movement amplitude.When the pulse gas flow accounts for a large ratio,the particle agglomerate tends to be larger.Therefore,in order to improve the fluidization effect,the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less.展开更多
Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism ...Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism of precipitation in RPB. Particle size and morphology were characterized by TEM, while the quality of synthesized BaSO4 powders was analyzed by XRD and BET, and compared with those prepared in a stirred-tank reactor. The important role of the inlet region of the RPB in the whole precipitation process was experimentally confirmed, as a significant essence for the design of industrial RPB for the precipitation of sparingly soluble materials. The effects of different operating conditions on particle size were also investigated, showing that particle size decreases with increasing rotational speed and liquid flow rate, due to the enhancement of micromixing in the RPB.展开更多
Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for ...Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fiuidization velocity of density-different mixtures, as the difference in the expres- sions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here.展开更多
文摘A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of AP+ concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experi- ments were carried out to evaluate the characteristics of the A1 form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on AP+ concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins.
基金The financial support of the National Nature Science Foundation of China(No.51406031)the Science Foundation of the Jilin Province Science and Technology Agency(Grant No.20160520032JH,20170101123JC)are gratefully acknowledged。
文摘Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance.In the process of fluidization,electrostatic interaction between particles will obviously accelerate particle agglomerate formation,which consequently reduces the fluidization performance.Pulsed gas flow injection is an efficient method to enhance particle mixing,thereby weakening the occurrence of particle agglomerate.In this study,the two-dimensional hybrid pulsed fluidized bed is established.The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects.Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition.Results show that in the presence of static electricity,the bubble generation position is lower,which is conducive to the particle flow.Pulsed gas flow can increase the particle velocity and improve the diffusion ability.The bubble generation time is different at different frequencies,and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics.Different gas flow ratios have significant impacts on the particle movement amplitude.When the pulse gas flow accounts for a large ratio,the particle agglomerate tends to be larger.Therefore,in order to improve the fluidization effect,the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less.
基金supported by the National Natural Science Foundation of China(Nos.20821004,20990221)the Beijing Municipal Commission of Education(No.JD100100403)the Innovation Team Program of Ministry of Education of China
文摘Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism of precipitation in RPB. Particle size and morphology were characterized by TEM, while the quality of synthesized BaSO4 powders was analyzed by XRD and BET, and compared with those prepared in a stirred-tank reactor. The important role of the inlet region of the RPB in the whole precipitation process was experimentally confirmed, as a significant essence for the design of industrial RPB for the precipitation of sparingly soluble materials. The effects of different operating conditions on particle size were also investigated, showing that particle size decreases with increasing rotational speed and liquid flow rate, due to the enhancement of micromixing in the RPB.
基金the Deanship of Scientific Research at King Saud University for funding this work through the Research Group Project Number RGP-VPP-188
文摘Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fiuidization velocity of density-different mixtures, as the difference in the expres- sions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here.