期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A new regeneration approach to cation resins with aluminum salts: application of desalination by its mixed bed 被引量:2
1
作者 Zhigang LIU Shaomin ZHU Yansheng LI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第1期45-50,共6页
A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of... A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of AP+ concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experi- ments were carried out to evaluate the characteristics of the A1 form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on AP+ concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins. 展开更多
关键词 aluminum (Al) form resins DESALINATION mixed bed (MB) REGENERATION
原文传递
CFD-DEM investigation into flow characteristics in mixed pulsed fluidized bed under electrostatic effects
2
作者 Hongwei Li Lei Wang +1 位作者 Changhe Du Wenpeng Hong 《Particuology》 SCIE EI CAS CSCD 2022年第7期100-112,共13页
Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance.In the process of fluidization,electrostatic interaction between particles will obviously accelerate particle agg... Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance.In the process of fluidization,electrostatic interaction between particles will obviously accelerate particle agglomerate formation,which consequently reduces the fluidization performance.Pulsed gas flow injection is an efficient method to enhance particle mixing,thereby weakening the occurrence of particle agglomerate.In this study,the two-dimensional hybrid pulsed fluidized bed is established.The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects.Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition.Results show that in the presence of static electricity,the bubble generation position is lower,which is conducive to the particle flow.Pulsed gas flow can increase the particle velocity and improve the diffusion ability.The bubble generation time is different at different frequencies,and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics.Different gas flow ratios have significant impacts on the particle movement amplitude.When the pulse gas flow accounts for a large ratio,the particle agglomerate tends to be larger.Therefore,in order to improve the fluidization effect,the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less. 展开更多
关键词 mixed pulsed fluidized bed CFD-DEM Electrostatic effects Flow characteristics
原文传递
Experimental investigation of nanoparticles precipitation in a rotating packed bed 被引量:1
3
作者 Yang Xiang Guangwen Chu Lixiong Wen Kuang Yang Guangting Xiao Jianfeng Chen 《Particuology》 SCIE EI CAS CSCD 2010年第4期372-378,共7页
Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism ... Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism of precipitation in RPB. Particle size and morphology were characterized by TEM, while the quality of synthesized BaSO4 powders was analyzed by XRD and BET, and compared with those prepared in a stirred-tank reactor. The important role of the inlet region of the RPB in the whole precipitation process was experimentally confirmed, as a significant essence for the design of industrial RPB for the precipitation of sparingly soluble materials. The effects of different operating conditions on particle size were also investigated, showing that particle size decreases with increasing rotational speed and liquid flow rate, due to the enhancement of micromixing in the RPB. 展开更多
关键词 Rotating packing bed BaSO4 Nanoparticle Precipitation Mixing
原文传递
Predicting minimum fluidization velocities of multi-component solid mixtures 被引量:3
4
作者 Mohammad Asif 《Particuology》 SCIE EI CAS CSCD 2013年第3期309-316,共8页
Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for ... Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fiuidization velocity of density-different mixtures, as the difference in the expres- sions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here. 展开更多
关键词 Minimum fluidization velocity Multi-component solid mixtures Flow regime bed void fraction Volume-change of mixing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部