In this paper,the authors used the Mixed Coordination EXAFS Analysis Method recently published and IR to study the mixed coordination of Ge in glasses of Li_2O-ZnO-GeO_2 system,a new kind of syperionic conductor.The r...In this paper,the authors used the Mixed Coordination EXAFS Analysis Method recently published and IR to study the mixed coordination of Ge in glasses of Li_2O-ZnO-GeO_2 system,a new kind of syperionic conductor.The results show that when the content of ZnO is fixed,the ratio of [GeO_6] units is increased with the addition of Li_2O until the content of Li_2O is about 15%,and then decreased.The relationship between the ratio of [GeO_6]and the content of Li_2O is consistent with those between n,d of glass and Li_2O content, Therefore the germanium abnormalty can be explained as the change of coordination number.展开更多
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
In this paper,a velocity filtering based track-before-detect algorithm in mixed coordinates is presented to address the problem of integration loss caused by inaccurate motion model in polar coordinate sensors.Since t...In this paper,a velocity filtering based track-before-detect algorithm in mixed coordinates is presented to address the problem of integration loss caused by inaccurate motion model in polar coordinate sensors.Since the motion of a con-stant velocity(CV)target is better modeled in Cartesian coordi-nates,the search of measurements for integration in polar sensor coordinates is carried out according to the CV model in Cartesian coordinates instead of an approximate model in polar sensor coordinates.The position of each cell is converted into Cartesian coordinates and predicted according to an assumed velocity.Then,the predicted Cartesian position is converted back to polar sensor coordinates for multiframe accumulation.The use of the correct model improves integration effectiveness and consequently improves algorithm performance.To handle the weak target with unknown velocity,a velocity filter bank in mixed coordinates is presented.The influence of velocity mis-match on the performance of filter bank is analyzed,and an effi-cient strategy for filter bank design is proposed.Numerical re-sults are presented to demonstrate the effectiveness of the pro-posed algorithm.展开更多
Traditional multiframe Track-Before-Detect(TBD)may incur adverse integration loss resulting from model mismatch in sensor coordinates.Its suboptimal integration strategy may cause target envelope degradation.To addres...Traditional multiframe Track-Before-Detect(TBD)may incur adverse integration loss resulting from model mismatch in sensor coordinates.Its suboptimal integration strategy may cause target envelope degradation.To address these issues,a pseudo-spectrum-based multiframe TBD in mixed coordinates is proposed firstly.The data search for energy integration is conducted based on an accurate model in the x-y plane while target energy is integrated based on pseudo-spectrum in sensor coordinates.The algorithm performance is improved since the model mismatch is eliminated,and the pseudo-spectrum based integration facilitates well maintained target envelope.The detailed multiframe integration procedure and theoretical target integrated envelope are derived.Secondly,to cope with the unknown target velocity,a velocity filter bank based on pseudo-spectrum in mixed coordinates is proposed.The effect of velocity mismatch on algorithm performance is analyzed and an efficient method for filter bank design is presented.Thirdly,a parameter estimation method using characteristics of integrated envelope is presented for improved target polar position and Cartesian velocity estimation.Finally,numerical results are provided to demonstrate the effectiveness of the proposed method.展开更多
Two distinct copper coordination polymers, namely [Cu^Ⅱ2(2,5-pydc)2(bpp)2]·H2O(1) and Cu2^ⅠCu^Ⅱ(2,5-pydc)2(bpp)2(2)(2,5-pydc = pyridine-2,5-dicarboxylic acid, bpp = 1,3-bi(4-pyridyl)propane), h...Two distinct copper coordination polymers, namely [Cu^Ⅱ2(2,5-pydc)2(bpp)2]·H2O(1) and Cu2^ⅠCu^Ⅱ(2,5-pydc)2(bpp)2(2)(2,5-pydc = pyridine-2,5-dicarboxylic acid, bpp = 1,3-bi(4-pyridyl)propane), have been successfully synthesized through hydrothermal conditions under different temperatures. Single-crystal X-ray structural analysis revealed that both complexes 1 and 2 are 3D frameworks. Complex 1 is an 8-connected 2-fold interpenetrating network based on [Cu(2,5-pydc)]4 molecular building block(MBB), and also can be simplified as a 4-connected net if the Cu(Ⅱ) ion is regarded as an independent node, whereas 2 shows a(4,4)-connected non-interpenetrated framework which contains mixed valence Cu(Ⅰ/Ⅱ) centers. The results demonstrate that temperature plays a significant role in the final structures of the complexes.展开更多
A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The propo...A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.展开更多
文摘In this paper,the authors used the Mixed Coordination EXAFS Analysis Method recently published and IR to study the mixed coordination of Ge in glasses of Li_2O-ZnO-GeO_2 system,a new kind of syperionic conductor.The results show that when the content of ZnO is fixed,the ratio of [GeO_6] units is increased with the addition of Li_2O until the content of Li_2O is about 15%,and then decreased.The relationship between the ratio of [GeO_6]and the content of Li_2O is consistent with those between n,d of glass and Li_2O content, Therefore the germanium abnormalty can be explained as the change of coordination number.
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
基金supported by the National Natural Science Foundation of China(61671181).
文摘In this paper,a velocity filtering based track-before-detect algorithm in mixed coordinates is presented to address the problem of integration loss caused by inaccurate motion model in polar coordinate sensors.Since the motion of a con-stant velocity(CV)target is better modeled in Cartesian coordi-nates,the search of measurements for integration in polar sensor coordinates is carried out according to the CV model in Cartesian coordinates instead of an approximate model in polar sensor coordinates.The position of each cell is converted into Cartesian coordinates and predicted according to an assumed velocity.Then,the predicted Cartesian position is converted back to polar sensor coordinates for multiframe accumulation.The use of the correct model improves integration effectiveness and consequently improves algorithm performance.To handle the weak target with unknown velocity,a velocity filter bank in mixed coordinates is presented.The influence of velocity mis-match on the performance of filter bank is analyzed,and an effi-cient strategy for filter bank design is proposed.Numerical re-sults are presented to demonstrate the effectiveness of the pro-posed algorithm.
基金supported by the National Natural Science Foundation of China(No.61671181)。
文摘Traditional multiframe Track-Before-Detect(TBD)may incur adverse integration loss resulting from model mismatch in sensor coordinates.Its suboptimal integration strategy may cause target envelope degradation.To address these issues,a pseudo-spectrum-based multiframe TBD in mixed coordinates is proposed firstly.The data search for energy integration is conducted based on an accurate model in the x-y plane while target energy is integrated based on pseudo-spectrum in sensor coordinates.The algorithm performance is improved since the model mismatch is eliminated,and the pseudo-spectrum based integration facilitates well maintained target envelope.The detailed multiframe integration procedure and theoretical target integrated envelope are derived.Secondly,to cope with the unknown target velocity,a velocity filter bank based on pseudo-spectrum in mixed coordinates is proposed.The effect of velocity mismatch on algorithm performance is analyzed and an efficient method for filter bank design is presented.Thirdly,a parameter estimation method using characteristics of integrated envelope is presented for improved target polar position and Cartesian velocity estimation.Finally,numerical results are provided to demonstrate the effectiveness of the proposed method.
基金supported by the application basis research key project of Yunnan Province science and technology department(201401CB00299)the major project of Qujing Normal University(2012ZD002)
文摘Two distinct copper coordination polymers, namely [Cu^Ⅱ2(2,5-pydc)2(bpp)2]·H2O(1) and Cu2^ⅠCu^Ⅱ(2,5-pydc)2(bpp)2(2)(2,5-pydc = pyridine-2,5-dicarboxylic acid, bpp = 1,3-bi(4-pyridyl)propane), have been successfully synthesized through hydrothermal conditions under different temperatures. Single-crystal X-ray structural analysis revealed that both complexes 1 and 2 are 3D frameworks. Complex 1 is an 8-connected 2-fold interpenetrating network based on [Cu(2,5-pydc)]4 molecular building block(MBB), and also can be simplified as a 4-connected net if the Cu(Ⅱ) ion is regarded as an independent node, whereas 2 shows a(4,4)-connected non-interpenetrated framework which contains mixed valence Cu(Ⅰ/Ⅱ) centers. The results demonstrate that temperature plays a significant role in the final structures of the complexes.
基金Project supported by the National Natural Science Foundation of China(No.10771142)Science and Technology Commission of Shanghai Municipality(No.75105118)+2 种基金Shanghai Leading Academic Discipline Projects(Nos.T0401 and J50101)Fund for E-institutes of Universities in Shanghai(No.E03004)and Innovative Foundation of Shanghai University(No.A.10-0101-07-408)
文摘A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.