Deep mixed oils with secondary alterations have been widely discovered in the Tarim Basin,but current methods based on biomarkers and isotopes to de-convolute mixed oil cannot calculate the exact mixing proportion of ...Deep mixed oils with secondary alterations have been widely discovered in the Tarim Basin,but current methods based on biomarkers and isotopes to de-convolute mixed oil cannot calculate the exact mixing proportion of different end-member oils,which has seriously hindered further exploration of deep hydrocarbons in the study area.To solve this problem,we constructed a novel method based on the carbon isotope(δ13C)of the group components to de-convolute mixed liquid hydrocarbons under the material balance principle.The results showed that the mixed oil in the Tazhong Uplift was dominantly contributed at an average proportion of 68% by an oil end-member with heavier d13C that was believed to be generated from the Cambrian-Lower Ordovician source rocks,whereas the mixed oil in the Tabei Uplift was predominantly contributed at an average proportion of 61% by an oil end-member with lighter d13C that was believed to be generated from the Middle-Upper Ordovician source rocks.This indicates that,on the basis of the detailed description of the distribution of effective source rocks,the proposed method will be helpful in realizing differential exploration and further improving the efficiency of deep liquid hydrocarbon exploration in the Tarim Basin.In addition,compared to traditional δ13C methods for whole oil and individual n-alkanes in de-convoluted mixed oil,the proposed method has a wider range of applications,including for mixed oils with variations in color and density,indicating potential for promoting the exploration of deep complex mixed oils in the Tarim Basin and even around the world.展开更多
Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work...Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1μm, while the last stage collected all particles smaller than 1 μm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accmnulation mode and the pattern of total PAHs associated with fine-particles (〈 1 μm) showed a dominance of larger molecular weight PAHs (4--6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges. As the palm oil was increased, the; BaPeq decreased gradually. Therefore the degununed-deacidified MCPO blends are recommended for diesel substitute.展开更多
基金The authors are grateful for the financial supports provided by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX04004-004)National Natural Science Foundation of China(41672125)。
文摘Deep mixed oils with secondary alterations have been widely discovered in the Tarim Basin,but current methods based on biomarkers and isotopes to de-convolute mixed oil cannot calculate the exact mixing proportion of different end-member oils,which has seriously hindered further exploration of deep hydrocarbons in the study area.To solve this problem,we constructed a novel method based on the carbon isotope(δ13C)of the group components to de-convolute mixed liquid hydrocarbons under the material balance principle.The results showed that the mixed oil in the Tazhong Uplift was dominantly contributed at an average proportion of 68% by an oil end-member with heavier d13C that was believed to be generated from the Cambrian-Lower Ordovician source rocks,whereas the mixed oil in the Tabei Uplift was predominantly contributed at an average proportion of 61% by an oil end-member with lighter d13C that was believed to be generated from the Middle-Upper Ordovician source rocks.This indicates that,on the basis of the detailed description of the distribution of effective source rocks,the proposed method will be helpful in realizing differential exploration and further improving the efficiency of deep liquid hydrocarbon exploration in the Tarim Basin.In addition,compared to traditional δ13C methods for whole oil and individual n-alkanes in de-convoluted mixed oil,the proposed method has a wider range of applications,including for mixed oils with variations in color and density,indicating potential for promoting the exploration of deep complex mixed oils in the Tarim Basin and even around the world.
基金supports from Prince of Songkla University(an annual research grant for fiscal years 2008-2010),the Center of Excellence for Innovation in Chemistry(PERCH-CIC),Office of the Higher Education Commission,Ministry of Education,Thailandthe Chaipattana Foundation under the support of the King of Thailand
文摘Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1μm, while the last stage collected all particles smaller than 1 μm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accmnulation mode and the pattern of total PAHs associated with fine-particles (〈 1 μm) showed a dominance of larger molecular weight PAHs (4--6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges. As the palm oil was increased, the; BaPeq decreased gradually. Therefore the degununed-deacidified MCPO blends are recommended for diesel substitute.